Efficient synthesis of bis(indolyl)methanes, bispyrazoles and biscoumarins using 4-sulfophthalic acid

[1]  M. R. Islami,et al.  A clean and highly efficient synthesis of 4,4′-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols) using Ce(SO4)2.4H2O as heterogeneous catalyst , 2017 .

[2]  R. Chauhan,et al.  Nafion-H® catalyzed efficient condensation of indoles with aromatic aldehydes in PEG-water solvent system: A green approach , 2016 .

[3]  K. Ashish,et al.  Indole-based distinctive chemosensors for ‘naked-eye’ detection of CN and HSO4−, associated with hydrogen-bonded complex and their DFT study , 2016 .

[4]  M. Gouda Chemistry of 4,4′‐(arylmethylene)‐bis(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐ol)s , 2016 .

[5]  Seyyed Emad Hooshmand,et al.  Copper supported on MWCNT-guanidine acetic acid@Fe3O4: synthesis, characterization and application as a novel multi-task nanocatalyst for preparation of triazoles and bis(indolyl)methanes in water , 2016 .

[6]  S. B. A. Hamid,et al.  N-Methylimidazolium perchlorate as a new ionic liquid for the synthesis of bis(pyrazol-5-ol)s under solvent-free conditions , 2016 .

[7]  Selvarajan Ethiraj,et al.  Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes , 2016 .

[8]  Anil Kumar,et al.  Selective Synthesis of Bis(indolyl)methanes Under Solvent Free Condition Using Glucopyranosylamine Derived cis-Dioxo Mo(VI) Complex as an Efficient Catalyst , 2016, Catalysis Letters.

[9]  M. Nikpassand,et al.  Fe+3-Montmorillonite K10, as effective, eco-friendly, and reusable catalyst for the synthesis of bis(1H-indol-3-yl)methanes under grinding condition , 2015, Russian Journal of General Chemistry.

[10]  K. Karthikeyan,et al.  Synthesis of some bis(Indolyl)methanes Catalyzed by Ascorbic Acid under Mild Conditions , 2015 .

[11]  R. Gupta,et al.  SiO2-Diphenic acid: An efficient and recyclable heterogeneous catalyst for one-pot synthesis of bis-(indolyl)methane derivatives in liquid phase , 2015, Proceedings of the Indian Academy of sciences. Chemical sciences.

[12]  Tae Kyu Kim,et al.  Green synthesis of AgI nanoparticle-functionalized reduced graphene oxide aerogels with enhanced catalytic performance and facile recycling , 2015 .

[13]  Samuel R. Mendes,et al.  Synthesis of bis(indolyl)methanes using ammonium niobium oxalate (ANO) as an efficient and recyclable catalyst , 2015 .

[14]  A. Guha,et al.  A selective ratiometric fluoride ion sensor with a (2,4-dinitrophenyl)hydrazine derivative of bis(indolyl) methane and its mode of interaction , 2015 .

[15]  S. Paul,et al.  Sulfonated carbon/nano-metal oxide composites: a novel and recyclable solid acid catalyst for organic synthesis in benign reaction media , 2015 .

[16]  N. Guchhait,et al.  An efficient solvent-free synthesis of bis(indolyl)methane-based naked eye chemosensor for Cu2+ ion from β-chloro-α,β-unsaturated aldehydes using PMA-Cellulose as a solid phase reusable catalyst , 2015 .

[17]  B. Sadeghi,et al.  Ag Nanoparticles: An Efficient and Versatile Reagent for Synthesis of Bis(indolyl)methanes , 2015 .

[18]  H. Meshram,et al.  An efficient and rapid protocol for the synthesis of diversely functionalized bisindolylmethanes , 2015 .

[19]  G. Jiang,et al.  α-Chymotrypsin-Catalyzed Synthesis of Bis(indolyl)alkanes in Water , 2015 .

[20]  J. Nanubolu,et al.  Oleic acid: a benign Brønsted acidic catalyst for densely substituted indole derivative synthesis , 2015 .

[21]  N. Gupta,et al.  Synthesis of indole and its derivatives in water , 2015, Chemistry of Heterocyclic Compounds.

[22]  J. Safaei‐Ghomi,et al.  Copper chromite nanoparticles as an efficient and recyclable catalyst for facile synthesis of 4,4'-(arylmethanediyl)bis(3-methyl-1H-pyrazol-5-ol) derivatives , 2015, Chemistry of Heterocyclic Compounds.

[23]  K. Khan,et al.  Rapid cesium fluoride-catalyzed Knoevenagel condensation for the synthesis of highly functionalized 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol) derivatives , 2015, Monatshefte für Chemie - Chemical Monthly.

[24]  Anlian Zhu,et al.  Choline Hydroxide: An Efficient and Biocompatible Basic Catalyst for the Synthesis of Biscoumarins Under Mild Conditions , 2015, Catalysis Letters.

[25]  M. Pordel,et al.  A rapid, efficient, and high-yielding synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives catalyzed by 12-tungstophosphoric acid (H3PW12O40) , 2015, Research on Chemical Intermediates.

[26]  M. Mokhtary,et al.  Bi(NO3)3·5H2O: An efficient catalyst for one-pot synthesis of 3-((aryl)(diethylamino)methyl)-4-hydroxy-2H-chromen-2-ones and biscoumarin derivatives , 2015 .

[27]  Ruslan F. Nasybullin,et al.  Catalyst-free tandem Knoevenagel-Michael reaction of aldehydes and pyrazolin-5-one: fast and convenient approach to medicinally relevant 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol)s , 2015 .

[28]  S. Khodabakhshi,et al.  A Rapid Tandem Knoevenagel/Michael Reaction Using Mohr’s Salt as a Highly Efficient Catalyst: Green Synthesis of Bis(pyrazolyl)methanes , 2015 .

[29]  H. Firouzabadi,et al.  Sulfonic acid-functionalized magnetic nanoparticles as a recyclable and eco-friendly catalyst for atom economical Michael addition reactions and bis indolyl methane synthesis , 2015 .

[30]  A. Chaskar,et al.  Silica supported sodium hydrogen sulfate and Indion 190 resin: An efficient and heterogeneous catalysts for facile synthesis of bis-(4-hydroxycoumarin-3-yl) methanes , 2015 .

[31]  M. Swaminathan,et al.  BiCl3-loaded montmorillonite K10: a new solid acid catalyst for solvent-free synthesis of bis(indolyl)methanes , 2015, Research on Chemical Intermediates.

[32]  J. Albadi,et al.  Green synthesis of biscoumarin derivatives catalyzed by recyclable CuO–CeO2 nanocomposite catalyst in water , 2015, Research on Chemical Intermediates.

[33]  Mingkai Li,et al.  New Biscoumarin Derivatives: Synthesis, Crystal Structure, Theoretical Study and Antibacterial Activity against Staphylococcus aureus , 2014, Molecules.

[34]  G. Jiang,et al.  Facile Synthesis of Bis(indolyl)methanes Catalyzed by α-Chymotrypsin , 2014, Molecules.

[35]  M. Ghasemzadeh,et al.  Solvent-free synthesis of dihydropyrano[3,2-c]chromene and biscoumarin derivatives using magnesium oxide nanoparticles as a recyclable catalyst. , 2014, Acta chimica Slovenica.

[36]  Lin Yuan,et al.  An underrated cheap Lewis acid: Molecular bromine as a robust catalyst for bis(indolyl)methanes synthesis , 2014 .

[37]  Ying Zhou,et al.  Synthesis, photoluminescent, antibacterial activities and theoretical studies of 4-hydroxycoumarin derivatives , 2014 .

[38]  A. K. Mallik,et al.  Two efficient and green methods for synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) without use of any catalyst or solvent , 2014 .

[39]  J. Safaei‐Ghomi,et al.  Pseudo five-component process for the synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives using ZnAl2O4 nanoparticles in aqueous media , 2014 .

[40]  S. Handy,et al.  A mild synthesis of bis(indolyl)methanes using a deep eutectic solvent , 2014 .

[41]  S. Pratihar,et al.  Oxalate capped iron nanomaterial: from methylene blue degradation to bis(indolyl)methane synthesis , 2014 .

[42]  A. Khorshidi,et al.  Zirconium(IV)-catalyzed one-pot synthesis and oxidation of bis- and tris(indolyl)methanes into conjugated chromophores as new pH indicators or calorimetric chemosensors for transition metals , 2014 .

[43]  K. Mohite,et al.  One dimensional CdS nanostructures: heterogeneous catalyst for synthesis of aryl-3,3′-bis(indol-3-yl)methanes , 2014 .

[44]  Naveen Kosar,et al.  Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. , 2014, European journal of medicinal chemistry.

[45]  M. Fanelli,et al.  Brønsted Acid Catalyzed Bisindolization of α-Amido Acetals: Synthesis and Anticancer Activity of Bis(indolyl)ethanamino Derivatives , 2014 .

[46]  José A Fernandes,et al.  Bis(4-hydroxy-2H-chromen-2-one): synthesis and effects on leukemic cell lines proliferation and NF-κB regulation. , 2014, Bioorganic & medicinal chemistry.

[47]  F. Shirini,et al.  Poly(4-vinylpyridinium) perchlorate as an efficient and recyclable catalyst for the synthesis of biscoumarins and bisindoles , 2014 .

[48]  F. Shirini,et al.  Introduction of titania sulfonic acid (TiO2-SO3H) as a new, efficient, and reusable heterogenous solid acid catalyst for the synthesis of biscoumarins , 2014 .

[49]  K. Parvanak Boroujeni,et al.  Synthesis of biscoumarin derivatives using poly(4-vinylpyridine)-supported dual acidic ionic liquid as a heterogeneous catalyst , 2014, Monatshefte für Chemie - Chemical Monthly.

[50]  Yuliang Zhang,et al.  An efficient and green one-pot three-component synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol)s catalyzed by 2-hydroxy ethylammonium propionate , 2014 .

[51]  M. Doroodmand,et al.  Propane-1,2,3-triyl tris(hydrogen sulfate): A mild and efficient recyclable catalyst for the synthesis of biscoumarin derivatives in water and solvent-free conditions , 2014 .

[52]  A. Hilgeroth,et al.  Glacial acetic acid as an efficient catalyst for simple synthesis of dindolylmethanes , 2014 .

[53]  J. Harp,et al.  Microwave-assisted, one-pot reaction of 7-azaindoles and aldehydes: a facile route to novel di-7-azaindolylmethanes. , 2014, Tetrahedron letters.

[54]  F. Shirini,et al.  Sulfonated rice husk ash (RHA-SO3H) as a highly efficient and reusable catalyst for the synthesis of some bis-heterocyclic compounds , 2013 .

[55]  A. Mahapatra,et al.  A new colorimetric and fluorescent bis(coumarin)methylene probe for fluoride ion detection based on the proton transfer signaling mode , 2013 .

[56]  S. Sobhani,et al.  Nano n-propylsulphonated γ-Fe2O3: A novel magnetically recyclable heterogeneous catalyst for the efficient synthesis of bis(pyrazolyl)methanes in water , 2013, Journal of Chemical Sciences.

[57]  M. Kerr,et al.  Scandium triflate-catalyzed nucleophilic additions to indolylmethyl Meldrum's acid derivatives via a gramine-type fragmentation: synthesis of substituted indolemethanes. , 2013, The Journal of organic chemistry.

[58]  F. Shirini,et al.  Succinimide-N-sulfonic acid catalyzed synthesis of bis(indolyl)methane and coumarin derivatives under mild conditions , 2013 .

[59]  B. Sadeghi,et al.  A Fast, Highly Efficient, and Green Protocol for Synthesis of Biscoumarins Catalyzed by Silica Sulfuric Acid Nanoparticles as a Reusable Catalyst , 2013 .

[60]  F. Shirini,et al.  An efficient and practical synthesis of bis(indolyl)methanes catalyzed by N-sulfonic acid poly(4-vinylpyridinium) chloride , 2013 .

[61]  R. Karimian,et al.  One-pot and chemoselective synthesis of bis(4-hydroxycoumarin) derivatives catalyzed by nano silica chloride , 2013, Journal of Nanostructure in Chemistry.

[62]  R. Pal New Greener Alternative for Biocondensation of Aldehydes and Indoles Using Lemon Juice: Formation of Bis-, Tris-, and Tetraindoles , 2013 .

[63]  K. Niknam,et al.  Simultaneous determination of Mn2+ and Fe3+ as 4,4'[(4-cholorophenyl)methylene] bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) complexes in some foods, vegetable and water samples by artificial neural networks. , 2013, Food chemistry.

[64]  A. Zare,et al.  Room-Temperature, Catalyst-Free, One-Pot Pseudo-Five-Component Synthesis of 4,4-(Arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s under Ultrasonic Irradiation , 2013 .

[65]  M. Zolfigol,et al.  Efficient Preparation of Sulfonylimines, Imidazoles and bis(Indolyl)methanes Catalyzed by [Et3NSO3H]Cl , 2013 .

[66]  R. R. Yadav,et al.  Discovery of 3,3'-diindolylmethanes as potent antileishmanial agents. , 2013, European journal of medicinal chemistry.

[67]  A. K. Mallik,et al.  A Rapid, Efficient and Green Method for Synthesis of 3,3'-Arylmethylene-bis-4-hydroxycoumarins without Use of any Solvent, Catalyst or Solid Surface , 2013 .

[68]  Roya Jahanshahi,et al.  Nano n-propylsulfonated γ-Fe2O3 (NPS-γ-Fe2O3) as a magnetically recyclable heterogeneous catalyst for the efficient synthesis of 2-indolyl-1-nitroalkanes and bis(indolyl)methanes , 2013 .

[69]  Keivan Ghodrati,et al.  Convenient, efficient, and green method for synthesis of bis(indolyl)methanes with nano SIO2 under ultrasonic irradiation , 2013, International Nano Letters.

[70]  K. Chandrasekhar,et al.  Indion Ina 225H resin as a novel, selective, recyclable, eco-benign heterogeneous catalyst for the synthesis of bis(indolyl)methanes , 2013 .

[71]  S. M. Baghbanian,et al.  p-sulfonic acid calix(4)arene: An efficient reusable organocatalyst for the synthesis of bis(indolyl)methanes derivatives in water and under solvent-free conditions , 2013 .

[72]  Baldev Singh,et al.  Fe/Al pillared clay catalyzed solvent-free synthesis of bisindolylmethanes using diversely substituted indoles and carbonyl compounds , 2013 .

[73]  Hidemasa Hikawa,et al.  Pd-catalyzed C–H activation in water: synthesis of bis(indolyl)methanes from indoles and benzyl alcohols , 2013 .

[74]  Dhrubajyoti Talukdar,et al.  A green synthesis of symmetrical bis(indol-3-yl)methanes using phosphate-impregnated titania catalyst under solvent free grinding conditions , 2013 .

[75]  A. K. Mallik,et al.  A Convenient, Eco-friendly, and Efficient Method for Synthesis of 3,3'-Arylmethylene-bis-4-hydroxycoumarins "On-water" , 2012 .

[76]  E. Ghasemi,et al.  1,3,5-Tris(hydrogensulfato) Benzene: A New and Efficient Catalyst for Synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol) Derivatives , 2012 .

[77]  Samuel R. Mendes,et al.  CeIII-promoted oxidation. Efficient aerobic one-pot eco-friendly synthesis of oxidized bis(indol-3-yl)methanes and cyclic tetra(indolyl)dimethanes , 2012 .

[78]  A. K. Mallik,et al.  A convenient, eco-friendly, and efficient method for synthesis of bis(3-indolyl)methanes “on-water” , 2012 .

[79]  S. Tilve,et al.  Synthesis of bis(indolyl)methanes under catalyst-free and solvent-free conditions , 2012 .

[80]  B. Karmakar,et al.  Sulfated titania catalyzed water mediated efficient synthesis of dicoumarols—a green approach , 2012 .

[81]  Baharak Pooladian,et al.  Tris(hydrogensulfato) boron as a solid heterogeneous catalyst for the rapid synthesis of α,α′-benzylidene bis(4-hydroxycoumarin) derivatives , 2012 .

[82]  M. Kalantari Synthesis of 1,8-dioxo-octahydroxanthenes and bis(indolyl)methanes catalyzed by [Et3NH][H2PO4] as a cheap and mild acidic ionic liquid , 2012 .

[83]  Wei Zhang,et al.  Green techniques for organic synthesis and medicinal chemistry , 2012 .

[84]  K. V. Vani,et al.  PEG-SO3H as a Catalyst for the Preparation of Bis-Indolyl and Tris-Indolyl Methanes in Aqueous Media , 2012 .

[85]  A. Sudalai,et al.  Efficient, rapid synthesis of bis(indolyl)methane using ethyl ammonium nitrate as an ionic liquid , 2012 .

[86]  Yonghong Zhou,et al.  Synthesis and Antioxidant Activities of Novel 4,4′‐Arylmethylene‐bis(1H‐pyrazole‐5‐ol)s from Lignin , 2012 .

[87]  N. Ganguly,et al.  Iodine in aqueous micellar environment: a mild effective ecofriendly catalytic system for expedient synthesis of bis(indolyl)methanes and 3-substituted indolyl ketones , 2012 .

[88]  N. Sekar,et al.  Phosphomolybdic Acid: An Efficient and Recyclable Solid Acid Catalyst for the Synthesis of 4,4′-(Arylmethylene)bis(1H-pyrazol-5-ols) , 2012 .

[89]  A. Davoodnia A Highly Efficient and Fast Method for the Synthesis of Biscoumarins Using Tetrabutylammonium Hexatungstate (TBA)2(W6O19) as Green and Reusable Heterogeneous Catalyst , 2011 .

[90]  A. C. Shaikh,et al.  An Easy and Efficient Synthesis of Bisindolylmethanes and Tetraindolylmethane Tröger's Base Catatlyzed by AgBF4 , 2011 .

[91]  Yu Wang,et al.  Novel SO3H-Functionalized Ionic Liquids Based on Benzimidazolium Cation: Efficient and Recyclable Catalysts for One-Pot Synthesis of Biscoumarin Derivatives , 2011 .

[92]  K. Niknam,et al.  Sulfuric Acid ([3-(3-Silicapropyl)sulfanyl]propyl)ester as a Recyclable Catalyst for the Synthesis of 4,4′-(Arylmethylene)bis(1H-pyrazol-5-ols) , 2011 .

[93]  Z. Siddiqui,et al.  Zn(Proline)2: a novel catalyst for the synthesis of dicoumarols , 2011 .

[94]  K. Niknam,et al.  Silica Sulfuric Acid, an Efficient and Recyclable Solid Acid Catalyst for the Synthesis of 4,4′-(Arylmethylene)bis (1H-pyrazol-5-ols) , 2011 .

[95]  B. Bhanage,et al.  Polyvinylsulfonic acid as a novel Brønsted acid catalyst for the synthesis of bis(indolyl)methanes , 2011 .

[96]  V. Patil,et al.  Synthesis of Bis(indolyl) Methanes in Catalyst- and Solvent-Free Reaction , 2011 .

[97]  Ji-tai Li,et al.  Efficient and green synthesis of bis(indolyl)methanes catalyzed by ABS in aqueous media under ultrasound irradiation. , 2011, Ultrasonics sonochemistry.

[98]  B. Cheng,et al.  Ionic liquid under ultrasonic irradiation towards a facile synthesis of pyrazolone derivatives. , 2011, Ultrasonics sonochemistry.

[99]  H. Abusaidi,et al.  Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water , 2010 .

[100]  M. Kumar,et al.  Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives. , 2010, Bioorganic & medicinal chemistry letters.

[101]  H. Veisi,et al.  Trichloroisocyanuric Acid-Catalyzed Reaction of Indoles: An Expeditious Synthesis of Bis-Indolyl, Tris-Indolyl, Di(bis-Indolyl), Tri(bis-Indolyl), and Tetra(bis-Indolyl)methane under Solid-State Conditions , 2010 .

[102]  J. Yadav,et al.  A practical synthesis of bis(indolyl)methanes employing boric acid , 2010 .

[103]  M. Zolfigol,et al.  Bis- and trisindolylmethanes (BIMs and TIMs). , 2010, Chemical reviews.

[104]  K. Niknam,et al.  Preparation of Silica-Bonded S-Sulfonic Acid: A Recyclable Catalyst for the Synthesis of Bis-Indolylmethanes , 2010 .

[105]  F. Salehian,et al.  A green method for the synthesis of bis-indolylmethanes and 3,3′-indolyloxindole derivatives using cellulose sulfuric acid under solvent-free conditions , 2010 .

[106]  P. T. Perumal,et al.  Synthesis and antiviral activity of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) against peste des petits ruminant virus (PPRV). , 2009, Bioorganic & medicinal chemistry letters.

[107]  M. Shingare,et al.  Alum Catalyzed Simple and Efficient Synthesis of Bis(indolyl)methanes by Ultrasound Approach , 2009 .

[108]  Xiao-Ling Liu,et al.  Synthesis of Bis(indolyl)methanes Using Recyclable PEG-Supported Sulfonic Acid as Catalyst , 2009 .

[109]  M. Shingare,et al.  Cellulose sulfuric acid: reusable catalyst for solvent-free synthesis of bis(indolyl)methanes at room temperature , 2008 .

[110]  A. Dar,et al.  Synthesis of Biscoumarins from 4-Hydroxycoumarin and Aromatic Aldehydes—A Comparative Assessment of Percentage Yield Under Thermal and Microwave-Assisted Conditions , 2008 .

[111]  P. Molina,et al.  Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations , 2008 .

[112]  S. Féry-Forgues,et al.  Synthesis and spectroscopic study of new biscoumarin dyes based on 7-(4-methylcoumarinyl) diesters , 2008 .

[113]  P. T. Perumal,et al.  Synthesis and anti-microbial activity of pyrazolylbisindoles--promising anti-fungal compounds. , 2006, Bioorganic & medicinal chemistry letters.

[114]  I. Manolov,et al.  Synthesis and Anticoagulant Activities of Substituted 2,4‐Diketochromans, Biscoumarins, and Chromanocoumarins , 2006, Archiv der Pharmazie.

[115]  G. Firestone,et al.  3,3′-Diindolylmethane Is a Novel Topoisomerase IIα Catalytic Inhibitor That Induces S-Phase Retardation and Mitotic Delay in Human Hepatoma HepG2 Cells , 2006, Molecular Pharmacology.

[116]  Yong Guo,et al.  Oxidized bis(indolyl)methane: a simple and efficient chromogenic-sensing molecule based on the proton transfer signaling mode. , 2006, Organic letters.

[117]  Jun Wang,et al.  A Mild and Efficient Synthesis of bis‐Indolylmethanes Catalyzed by Sulfamic Acid , 2005 .

[118]  M. Lodhi,et al.  Biscoumarin: new class of urease inhibitors; economical synthesis and activity. , 2004, Bioorganic & medicinal chemistry.

[119]  V. Ravikanth,et al.  Zeolite Catalyzed Synthesis of bis (Indolyl) Methanes , 2003 .

[120]  G. Palmisano,et al.  The Reactivity of 4-Hydroxycoumarin under Heterogeneous High-Intensity Sonochemical Conditions , 2003 .

[121]  J. Hayes,et al.  Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. , 2001, Cancer research.

[122]  Toshio Suzuki,et al.  Synthesis of Methylenebis(4-hydroxy-2-pyrone)or Methylenebis(4-hydroxycoumarin)Derivatives by Organic Solid State Reaction , 2000 .

[123]  Y. Pommier,et al.  DESIGN AND SYNTHESIS OF PHOTOACTIVATABLE COUMARIN-CONTAINING HIV-1 INTEGRASE INHIBITORS , 1997 .

[124]  D. Landry,et al.  GLYCOSYL PHOSPHORAMIDIMIDATES AS VERSATILE GLYCOSYL DONORS , 1997 .

[125]  M. Londershausen Review: Approaches to New Parasiticides , 1996 .

[126]  S. Aoki,et al.  Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. , 1994, Chemical & pharmaceutical bulletin.

[127]  R. K. Chatterjee,et al.  Antifilarial Profile of Substituted Pyrazoles: A New Class of Antifilarial Agents. , 1993 .

[128]  M. D’Auria Photochemical synthesis of diindolylmethanes , 1991 .

[129]  Devinder Singh,et al.  SYNTHESIS AND ANTIFUNGAL ACTIVITY OF SOME 4-ARYLMETHYLENE DERIVATIVES OF SUBSTITUTED PYRAZOLONES , 1991 .

[130]  R. Mahajan,et al.  SYNTHESES AND BIOLOGICAL ACTIVITY OF HETEROCYCLES DERIVED FROM 3-METHOXY-I-PHENYL-IH-PYRAZOLE-5-CARBOXYLATE , 1991 .

[131]  D. M. Bailey,et al.  3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. , 1985, Journal of medicinal chemistry.

[132]  T. Osawa,et al.  Structure elucidation of streptindole, a novel genotoxic metabolite isolated from intestinal bacteria , 1983 .

[133]  K. Kato,et al.  Synthesis and antiinflammatory and hypnotic activity of 5-alkoxy-3-(N-substituted carbamoyl)-1-phenylpyrazoles. , 1977, Journal of medicinal chemistry.

[134]  C. H. Jarboe,et al.  Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings , 1967 .

[135]  H. Lubs The chemistry of synthetic dyes and pigments , 1965 .

[136]  M. Grossman,et al.  An analog of histamine that stimulates gastric acid secretion without other actions of histamine. , 1951, Science.