Common fixed points for multivalued mappings in G-metric spaces with applications

In this paper, we define new notions called (g-F) contractions and generalize Mizoguchi-Takahashi contractions for complete G-metric spaces and we establish some new coincidence points and common fixed point results. Our results unify and generalize various known comparable results from the current literature. An example and application are given to illustrate the usability of the main results. c ©2017 All rights reserved.

[1]  Hassen Aydi,et al.  Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces , 2012 .

[2]  N. Hussain,et al.  SUZUKI-WARDOWSKI TYPE FIXED POINT THEOREMS FOR $\alpha$-GF-CONTRACTIONS , 2014 .

[3]  Zead Mustafa,et al.  A new approach to generalized metric spaces , 2006 .

[4]  Ö. Acar,et al.  A Fixed Point Theorem for Multivalued Mappings with -Distance , 2014 .

[5]  M. Abbas,et al.  Fixed and periodic points of generalized contractions in metric spaces , 2013 .

[6]  W. A. Kirk Some recent results in metric fixed point theory , 2007 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Xian Zhang,et al.  Cone metric spaces and fixed point theorems of contractive mappings , 2007 .

[9]  B. Dhage,et al.  GENERALISED METRIC SPACE AND MAPPINGS WITH FIXED POINT , 1992 .

[10]  M. Arshad,et al.  On a Fixed Point Theorem with Application to Integral Equations , 2016 .

[11]  F. Khojasteh,et al.  Common fixed point of the generalized Mizoguchi-Takahashi’s type contractions , 2014 .

[12]  M. Abbas,et al.  Some fixed point results for dualistic rational contractions , 2016 .

[13]  Stojan Radenovic,et al.  Fixed point theorem for two non-self mappings in cone metric spaces , 2009, Comput. Math. Appl..

[14]  Dariusz Wardowski,et al.  Fixed points of a new type of contractive mappings in complete metric spaces , 2012, Fixed Point Theory and Applications.

[15]  Poom Kumam,et al.  Some fixed point theorems concerning F-contraction in complete metric spaces , 2014, Fixed Point Theory and Applications.

[16]  S. Rezapour,et al.  Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings" , 2008 .

[17]  S. Khan,et al.  Two new types of fixed point theorems for F-contraction , 2016 .

[18]  A Branciari,et al.  A fixed point theorem of Banach--Caccioppoli type on a class of generalized metric spaces , 2000, Publicationes Mathematicae Debrecen.

[19]  A unique common fixed point theorem for six maps in g-metric spaces , 2012 .

[20]  Hassen Aydi,et al.  Generalized Meir-Keeler type contractions on G-metric spaces , 2013, Appl. Math. Comput..

[21]  L. Ciric,et al.  A generalization of Banach’s contraction principle , 1974 .

[22]  -Generalization of Fixed Point Results for F-Contractions , 2015 .

[23]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[24]  M. Edelstein On Fixed and Periodic Points Under Contractive Mappings , 1962 .

[25]  Anchalee Kaewcharoen,et al.  Common Fixed Points for Single-Valued and Multi-Valued Mappings in G-Metric Spaces , 2011 .

[26]  Coincidence point theorems for generalized contractions with application to integral equations , 2015 .

[27]  Vahid Parvaneh,et al.  Some coincidence point results for generalized (ψ,φ)-weakly contractive mappings in ordered G-metric spaces , 2013, Fixed Point Theory and Applications.

[28]  E. Karapınar,et al.  α-admissible mappings and related fixed point theorems , 2013, Journal of Inequalities and Applications.

[29]  S. Khan,et al.  FIXED POINT RESULTS FOR F-CONTRACTIONS INVOLVING SOME NEW RATIONAL EXPRESSIONS , 2016 .

[30]  Nicolae Adrian Secelean,et al.  Iterated function systems consisting of F-contractions , 2013, Fixed Point Theory and Applications.

[31]  S. Nadler Multi-valued contraction mappings. , 1969 .

[32]  Mujahid Abbas,et al.  Fixed and periodic point results in cone metric spaces , 2009, Appl. Math. Lett..

[33]  Michael A. Geraghty,et al.  On contractive mappings , 1973 .