Biosynthetic relationship between C₂₈-brassinosteroids and C₂₉-brassinosteroids in rice (Oryza sativa) seedlings.

[1]  Seong-Ki Kim,et al.  C-26 Demethylation of Brassinosteroids in Arabidopsis thaliana , 2013 .

[2]  T. Yokota,et al.  Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana , 2011, Journal of experimental botany.

[3]  S. Fujioka,et al.  Rice CYP734As function as multisubstrate and multifunctional enzymes in brassinosteroid catabolism. , 2011, The Plant journal : for cell and molecular biology.

[4]  Zhi-Yong Wang,et al.  Brassinosteroid signal transduction from receptor kinases to transcription factors. , 2010, Annual review of plant biology.

[5]  Sunghwa Choe Brassinosteroid Biosynthesis and Metabolism , 2010 .

[6]  K. Feldmann,et al.  Brassinosteroids Regulate Grain Filling in Rice[W][OA] , 2008, The Plant Cell Online.

[7]  S. Fujioka,et al.  Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. , 2006, The Plant journal : for cell and molecular biology.

[8]  Z. Hong,et al.  The Rice brassinosteroid-deficient dwarf2 Mutant, Defective in the Rice Homolog of Arabidopsis DIMINUTO/DWARF1, Is Rescued by the Endogenously Accumulated Alternative Bioactive Brassinosteroid, Dolichosterone , 2005, The Plant Cell Online.

[9]  J. Ward,et al.  BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. , 2005, The Plant journal : for cell and molecular biology.

[10]  S. Takatsuto,et al.  Occurrence of three new brassinosteroids: brassinone, (24S)-24-ethylbrassinone and 28-norbrassinolide, in higher plants , 1983, Experientia.

[11]  Tae-Wuk Kim,et al.  Cell-Free Conversion of Castasterone in Cultured Cells of Phaseolus vulgaris and Marchantia polymorpha. , 2004 .

[12]  S. Takatsuto,et al.  Novel Biosynthetic Pathway of Castasterone from Cholesterol in Tomato1 , 2004, Plant Physiology.

[13]  Hiroyuki Suzuki,et al.  Biosynthesis of brassinolide from castasterone in cultured cells of Catharanthus roseus , 1993, Journal of Plant Growth Regulation.

[14]  S. Fujioka,et al.  Biosynthesis and Metabolism of Brassinosteroids , 2003 .

[15]  A. Tretyn,et al.  The chemical characteristic and distribution of brassinosteroids in plants. , 2003, Phytochemistry.

[16]  T. Nelson,et al.  The Identification of CVP1 Reveals a Role for Sterols in Vascular Patterning Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003939. , 2002, The Plant Cell Online.

[17]  K. Lindsey,et al.  hydra Mutants of Arabidopsis Are Defective in Sterol Profiles and Auxin and Ethylene Signaling Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001248. , 2002, The Plant Cell Online.

[18]  T. Yokota,et al.  Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. , 2001, Plant & cell physiology.

[19]  S. Fujioka,et al.  A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. , 2000, Genes & development.

[20]  K. Schrick,et al.  FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. , 2000, Genes & development.

[21]  G. Fink,et al.  STEROL METHYLTRANSFERASE 1 Controls the Level of Cholesterol in Plants , 2000, Plant Cell.

[22]  Tae-Wuk Kim,et al.  Metabolism of Brassinolide in Suspension Cultured Cells of Phaseolus vulgaris , 2000 .

[23]  Tae Jeong. Kim,et al.  Catalytic Cyclopolymerization and Copolymerization of Diethyl Dipropargylmalonate by (toluene)Mo$(CO)_3 , 2000 .

[24]  Seung-Hyun Park,et al.  In Vivo and in Vitro Conversion of Teasterone to Typhasterol in Cultured Cells of Marchantia polymorpha , 1999 .

[25]  N. Chua,et al.  The Arabidopsis DIMINUTO/DWARF1 Gene Encodes a Protein Involved in Steroid Synthesis , 1998, Plant Cell.

[26]  S. Clouse,et al.  BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development. , 1998, Annual review of plant physiology and plant molecular biology.

[27]  T. Yokota The structure, biosynthesis and function of brassinosteroids , 1997 .

[28]  T. Yokota,et al.  6-Deoxotyphasterol and 3-Dehydro-6-deoxoteasterone, Possible Precursors to Brassi-nosteroids in the Pollen of Cupressus arizonica , 1995 .

[29]  S. Takatsuto,et al.  Secasterone, the first naturally occurring 2,3-epoxybrassinosteroid from Secale cereale , 1995 .

[30]  S. Takatsuto,et al.  28-Homotyphasterol, a New Natural Brassinosteroid from Rice (Oryza sativa L.) Bran , 1995 .

[31]  T. Yokota,et al.  28-Homoteasterone, a naturally occurring brassinosteroid from seeds of Raphanus sativus , 1993 .

[32]  T. Yokota,et al.  Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: Configuration at C-24 , 1987 .

[33]  S. Takatsuto,et al.  A New Brassinolide-related Steroid in the Leaves of Thea sinensis , 1984 .

[34]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.