The inverse problem
暂无分享,去创建一个
[1] R. Mackie,et al. Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .
[2] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[3] William Rodi,et al. 3-D magnetotelluric inversion for resource exploration , 2001 .
[4] S. D. Billings,et al. Errors in hypocenter location: Picking, model, and magnitude dependence , 1994, Bulletin of the Seismological Society of America.
[5] K. Kubik,et al. Compact gravity inversion , 1983 .
[6] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[7] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[8] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[9] F. X. Bostick,et al. MAGNETOTELLURIC MODELING TECHNIQUES. , 1969 .
[10] Yongwimon Lenbury,et al. Three-dimensional magnetotelluric inversion : data-space method , 2005 .
[11] Xianjin Yang. Stochastic inversion of 3-D ERT data , 1999 .
[12] Gary D. Egbert,et al. An efficient data-subspace inversion method for 2-D magnetotelluric data , 2000 .
[13] Myung Jin Nam,et al. Efficient three-dimensional inversion of magnetotelluric data using approximate sensitivities , 2008 .
[14] C. Vogel,et al. Analysis of bounded variation penalty methods for ill-posed problems , 1994 .
[15] Tom M. Apostol,et al. Mathematical analysis : a modern approach to advanced calculus / Tom M. Apostol , 1957 .
[16] Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depth , 1999 .
[17] Maurice G. Kendall,et al. The Advanced Theory of Statistics, Vol. 2: Inference and Relationship , 1979 .
[18] Dmitry B. Avdeev,et al. Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .
[19] Michael S. Zhdanov,et al. Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem , 2004 .
[20] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[21] D. Oldenburg. One-dimensional inversion of natural source magnetotelluric observations , 1979 .
[22] R. Wiggins,et al. The general linear inverse problem - Implication of surface waves and free oscillations for earth structure. , 1972 .
[23] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[24] F. Abramovici,et al. Crustal structure in central Israel from the inversion of magnetotelluric data , 1978 .
[25] S. Treitel,et al. A REVIEW OF LEAST-SQUARES INVERSION AND ITS APPLICATION TO GEOPHYSICAL PROBLEMS* , 1984 .
[26] M. Foster. An Application of the Wiener-Kolmogorov Smoothing Theory to Matrix Inversion , 1961 .
[27] D. Oldenburg,et al. Generalized subspace methods for large-scale inverse problems , 1993 .
[28] J. T. Smith,et al. Magnetotelluric inversion for minimum structure , 1988 .
[29] R. Parker. The inverse problem of electromagnetic induction: Existence and construction of solutions based on incomplete data , 1980 .
[30] John R. Booker,et al. Electromagnetic Induction Studies , 1987 .
[31] David L. Phillips,et al. A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.
[32] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[33] D. Oldenburg,et al. NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .
[34] M. Menvielle,et al. Bayesian inversion with Markov chains—I. The magnetotelluric one-dimensional case , 1999 .
[35] A. Abubakar,et al. A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .
[36] R. Fletcher. Practical Methods of Optimization , 1988 .
[37] R. Parker. Geophysical Inverse Theory , 1994 .
[38] C. Farquharson,et al. Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada , 2009 .
[39] Douglas W. Oldenburg,et al. Practical strategies for the solution of large‐scale electromagnetic inverse problems , 1994 .
[40] M. Moorkamp,et al. Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: Are seismic velocities and electrical conductivities compatible? , 2007 .
[41] G. Backus,et al. Numerical Applications of a Formalism for Geophysical Inverse Problems , 1967 .
[42] David L.B. Jupp,et al. Stable Iterative Methods for the Inversion of Geophysical Data , 2007 .
[43] D. Jackson. Interpretation of Inaccurate, Insufficient and Inconsistent Data , 1972 .
[44] P. Weidelt. The inverse problem of geomagnetic induction , 1973 .
[45] Joel Franklin,et al. Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .
[46] G. Backus,et al. The Resolving Power of Gross Earth Data , 1968 .
[47] Hisashi Utada,et al. Upper mantle electrical resistivity structure beneath the central Mariana subduction system , 2010 .
[48] J. Claerbout,et al. Robust Modeling With Erratic Data , 1973 .
[49] Weerachai Siripunvaraporn,et al. Three-Dimensional Magnetotelluric Inversion: An Introductory Guide for Developers and Users , 2011, Surveys in Geophysics.
[50] J. Larsen. A new technique for layered earth magnetotelluric inversion , 1981 .
[51] A. Malinverno. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .
[52] Paul T. Boggs,et al. Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .
[53] G. Wahba. Spline models for observational data , 1990 .
[54] Alan D. Chave,et al. On the robust estimation of power spectra, coherences, and transfer functions , 1987 .
[55] Michel Roussignol,et al. Bayesian statistics of non-linear inverse problems: example of the magnetotelluric 1-D inverse problem , 1994 .
[56] William Rodi,et al. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .
[57] Mario Bertero,et al. Introduction to Inverse Problems in Imaging , 1998 .
[58] Frank Morrison,et al. Sharp boundary inversion of 2D magnetotelluric data , 1999 .
[59] Kathryn A. Whaler,et al. Numerical methods for establishing solutions to the inverse problem of electromagnetic induction , 1981 .
[60] William Rodi,et al. Grid-search event location with non-Gaussian error models , 2006 .
[61] R. Parker. The Inverse Problem of Electrical Conductivity in the Mantle , 1971 .
[62] Alan D. Chave,et al. The Fréchet Derivatives of electromagnetic induction , 1984 .
[63] G. Newman,et al. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .
[64] Steven Constable,et al. Inversion of magnetotelluric data for 2D structure with sharp resistivity contrasts , 2004 .
[65] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[66] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[67] J. Bee Bednar,et al. Fast algorithms for lpdeconvolution , 1985, IEEE Trans. Acoust. Speech Signal Process..
[68] Douglas W. Oldenburg,et al. Efficient inversion of magnetotelluric data in two dimensions , 1993 .
[69] Clifford H. Thurber,et al. Parameter estimation and inverse problems , 2005 .
[70] D. Loewenthal. Theoretical Uniqueness of the Magnetotelluric Inverse Problem for Equal Penetration Discretizable Models , 1975 .
[71] William Rodi,et al. Joint 3D Inversion of Marine CSEM And MT Data , 2007 .
[72] H. Ekblom. Calculation of linear bestLp-approximations , 1973 .
[73] Per Christian Hansen,et al. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..
[74] S. Constable,et al. Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .
[75] R. Parker. Linear inference and underparameterized models , 1977 .
[76] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[77] Michael S. Zhdanov,et al. Focusing geophysical inversion images , 1999 .
[78] Clayton V. Deutsch,et al. GSLIB: Geostatistical Software Library and User's Guide , 1993 .
[79] Klaus Mosegaard,et al. MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .
[80] R. Parker,et al. Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .
[81] Douglas W. Oldenburg,et al. Calculation of sensitivities for the frequency-domain electromagnetic problem , 1994 .
[82] Qinya Liu,et al. Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .
[83] R. Wolke,et al. Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .
[84] Donald W. Marquaridt. Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .
[85] J. Pujol. The solution of nonlinear inverse problems and the Levenberg-Marquardt method , 2007 .
[86] J. Gillis,et al. Linear Differential Operators , 1963 .
[87] Francis T. Wu,et al. THE INVERSE PROBLEM OF MAGNETOTELLURIC SOUNDING , 1968 .
[88] Catherine Constable,et al. Parameter estimation in non-Gaussian noise , 1988 .
[89] Yutaka Sasaki,et al. Two‐dimensional joint inversion of magnetotelluric and dipole‐dipole resistivity data , 1989 .
[90] D. Oldenburg,et al. Inversion of Magnetotelluric Data for a One-Dimensional Conductivity , 1992 .
[91] Gary D. Egbert,et al. WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation , 2009 .
[92] S. Treitel,et al. Fast l p solution of large, sparse, linear systems: application to seismic travel time tomography , 1988 .
[93] Jack Dongarra,et al. LINPACK Users' Guide , 1987 .
[94] J. T. Smith,et al. Rapid inversion of two‐ and three‐dimensional magnetotelluric data , 1991 .
[95] S. Twomey,et al. On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.
[96] Mrinal K. Sen,et al. Global Optimization Methods in Geophysical Inversion , 1995 .
[97] R. Yarlagadda,et al. Fast Algorithms for lp Deconvolution , 1985 .
[98] Ralf Wolke. Iteratively reweighted least squares: A comparison of several single step algorithms for linear models , 1992 .
[99] Y. Sasaki. Full 3-D inversion of electromagnetic data on PC , 2001 .
[100] A. Tarantola,et al. Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .
[101] W. Rodi. A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .
[102] David L.B. Jupp,et al. Two-dimensional magnetotelluric inversion , 1977 .
[103] W. L. Rodi,et al. Implications of magnetotelluric modeling for the deep crustal environment in the Rio Grande rift , 1987 .
[104] A. Morelli. Inverse Problem Theory , 2010 .
[105] R. L. Mackie,et al. Three-dimensional magnetotelluric modelling and inversion , 1989, Proc. IEEE.
[106] D. Oldenburg,et al. METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY1 , 1990 .
[107] D. Jackson. The use of a priori data to resolve non‐uniqueness in linear inversion , 1979 .
[108] E. Haber,et al. On optimization techniques for solving nonlinear inverse problems , 2000 .
[109] E. Polak,et al. Computational methods in optimization : a unified approach , 1972 .
[110] D. Oldenburg,et al. Subspace linear inverse method , 1994 .
[111] R. C. Bailey,et al. Inversion of the geomagnetic induction problem , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[112] D. Alumbaugh. Linearized and nonlinear parameter variance estimation for two-dimensional electromagnetic induction inversion , 2000 .
[113] D. Oldenburg,et al. Approximate sensitivities for the electromagnetic inverse problem , 1996 .
[114] G. Backus,et al. Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[115] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[116] Yutaka Sasaki,et al. Three-dimensional inversion of static-shifted magnetotelluric data , 2004 .