The inverse problem

[1]  R. Mackie,et al.  Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .

[2]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[3]  William Rodi,et al.  3-D magnetotelluric inversion for resource exploration , 2001 .

[4]  S. D. Billings,et al.  Errors in hypocenter location: Picking, model, and magnitude dependence , 1994, Bulletin of the Seismological Society of America.

[5]  K. Kubik,et al.  Compact gravity inversion , 1983 .

[6]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[7]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[8]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[9]  F. X. Bostick,et al.  MAGNETOTELLURIC MODELING TECHNIQUES. , 1969 .

[10]  Yongwimon Lenbury,et al.  Three-dimensional magnetotelluric inversion : data-space method , 2005 .

[11]  Xianjin Yang Stochastic inversion of 3-D ERT data , 1999 .

[12]  Gary D. Egbert,et al.  An efficient data-subspace inversion method for 2-D magnetotelluric data , 2000 .

[13]  Myung Jin Nam,et al.  Efficient three-dimensional inversion of magnetotelluric data using approximate sensitivities , 2008 .

[14]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[15]  Tom M. Apostol,et al.  Mathematical analysis : a modern approach to advanced calculus / Tom M. Apostol , 1957 .

[16]  Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depth , 1999 .

[17]  Maurice G. Kendall,et al.  The Advanced Theory of Statistics, Vol. 2: Inference and Relationship , 1979 .

[18]  Dmitry B. Avdeev,et al.  Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .

[19]  Michael S. Zhdanov,et al.  Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem , 2004 .

[20]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[21]  D. Oldenburg One-dimensional inversion of natural source magnetotelluric observations , 1979 .

[22]  R. Wiggins,et al.  The general linear inverse problem - Implication of surface waves and free oscillations for earth structure. , 1972 .

[23]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[24]  F. Abramovici,et al.  Crustal structure in central Israel from the inversion of magnetotelluric data , 1978 .

[25]  S. Treitel,et al.  A REVIEW OF LEAST-SQUARES INVERSION AND ITS APPLICATION TO GEOPHYSICAL PROBLEMS* , 1984 .

[26]  M. Foster An Application of the Wiener-Kolmogorov Smoothing Theory to Matrix Inversion , 1961 .

[27]  D. Oldenburg,et al.  Generalized subspace methods for large-scale inverse problems , 1993 .

[28]  J. T. Smith,et al.  Magnetotelluric inversion for minimum structure , 1988 .

[29]  R. Parker The inverse problem of electromagnetic induction: Existence and construction of solutions based on incomplete data , 1980 .

[30]  John R. Booker,et al.  Electromagnetic Induction Studies , 1987 .

[31]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[32]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[33]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[34]  M. Menvielle,et al.  Bayesian inversion with Markov chains—I. The magnetotelluric one-dimensional case , 1999 .

[35]  A. Abubakar,et al.  A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .

[36]  R. Fletcher Practical Methods of Optimization , 1988 .

[37]  R. Parker Geophysical Inverse Theory , 1994 .

[38]  C. Farquharson,et al.  Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada , 2009 .

[39]  Douglas W. Oldenburg,et al.  Practical strategies for the solution of large‐scale electromagnetic inverse problems , 1994 .

[40]  M. Moorkamp,et al.  Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: Are seismic velocities and electrical conductivities compatible? , 2007 .

[41]  G. Backus,et al.  Numerical Applications of a Formalism for Geophysical Inverse Problems , 1967 .

[42]  David L.B. Jupp,et al.  Stable Iterative Methods for the Inversion of Geophysical Data , 2007 .

[43]  D. Jackson Interpretation of Inaccurate, Insufficient and Inconsistent Data , 1972 .

[44]  P. Weidelt The inverse problem of geomagnetic induction , 1973 .

[45]  Joel Franklin,et al.  Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .

[46]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[47]  Hisashi Utada,et al.  Upper mantle electrical resistivity structure beneath the central Mariana subduction system , 2010 .

[48]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[49]  Weerachai Siripunvaraporn,et al.  Three-Dimensional Magnetotelluric Inversion: An Introductory Guide for Developers and Users , 2011, Surveys in Geophysics.

[50]  J. Larsen A new technique for layered earth magnetotelluric inversion , 1981 .

[51]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[52]  Paul T. Boggs,et al.  Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .

[53]  G. Wahba Spline models for observational data , 1990 .

[54]  Alan D. Chave,et al.  On the robust estimation of power spectra, coherences, and transfer functions , 1987 .

[55]  Michel Roussignol,et al.  Bayesian statistics of non-linear inverse problems: example of the magnetotelluric 1-D inverse problem , 1994 .

[56]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[57]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[58]  Frank Morrison,et al.  Sharp boundary inversion of 2D magnetotelluric data , 1999 .

[59]  Kathryn A. Whaler,et al.  Numerical methods for establishing solutions to the inverse problem of electromagnetic induction , 1981 .

[60]  William Rodi,et al.  Grid-search event location with non-Gaussian error models , 2006 .

[61]  R. Parker The Inverse Problem of Electrical Conductivity in the Mantle , 1971 .

[62]  Alan D. Chave,et al.  The Fréchet Derivatives of electromagnetic induction , 1984 .

[63]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[64]  Steven Constable,et al.  Inversion of magnetotelluric data for 2D structure with sharp resistivity contrasts , 2004 .

[65]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[66]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[67]  J. Bee Bednar,et al.  Fast algorithms for lpdeconvolution , 1985, IEEE Trans. Acoust. Speech Signal Process..

[68]  Douglas W. Oldenburg,et al.  Efficient inversion of magnetotelluric data in two dimensions , 1993 .

[69]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[70]  D. Loewenthal Theoretical Uniqueness of the Magnetotelluric Inverse Problem for Equal Penetration Discretizable Models , 1975 .

[71]  William Rodi,et al.  Joint 3D Inversion of Marine CSEM And MT Data , 2007 .

[72]  H. Ekblom Calculation of linear bestLp-approximations , 1973 .

[73]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[74]  S. Constable,et al.  Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .

[75]  R. Parker Linear inference and underparameterized models , 1977 .

[76]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[77]  Michael S. Zhdanov,et al.  Focusing geophysical inversion images , 1999 .

[78]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[79]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[80]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[81]  Douglas W. Oldenburg,et al.  Calculation of sensitivities for the frequency-domain electromagnetic problem , 1994 .

[82]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[83]  R. Wolke,et al.  Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .

[84]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .

[85]  J. Pujol The solution of nonlinear inverse problems and the Levenberg-Marquardt method , 2007 .

[86]  J. Gillis,et al.  Linear Differential Operators , 1963 .

[87]  Francis T. Wu,et al.  THE INVERSE PROBLEM OF MAGNETOTELLURIC SOUNDING , 1968 .

[88]  Catherine Constable,et al.  Parameter estimation in non-Gaussian noise , 1988 .

[89]  Yutaka Sasaki,et al.  Two‐dimensional joint inversion of magnetotelluric and dipole‐dipole resistivity data , 1989 .

[90]  D. Oldenburg,et al.  Inversion of Magnetotelluric Data for a One-Dimensional Conductivity , 1992 .

[91]  Gary D. Egbert,et al.  WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation , 2009 .

[92]  S. Treitel,et al.  Fast l p solution of large, sparse, linear systems: application to seismic travel time tomography , 1988 .

[93]  Jack Dongarra,et al.  LINPACK Users' Guide , 1987 .

[94]  J. T. Smith,et al.  Rapid inversion of two‐ and three‐dimensional magnetotelluric data , 1991 .

[95]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[96]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[97]  R. Yarlagadda,et al.  Fast Algorithms for lp Deconvolution , 1985 .

[98]  Ralf Wolke Iteratively reweighted least squares: A comparison of several single step algorithms for linear models , 1992 .

[99]  Y. Sasaki Full 3-D inversion of electromagnetic data on PC , 2001 .

[100]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[101]  W. Rodi A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .

[102]  David L.B. Jupp,et al.  Two-dimensional magnetotelluric inversion , 1977 .

[103]  W. L. Rodi,et al.  Implications of magnetotelluric modeling for the deep crustal environment in the Rio Grande rift , 1987 .

[104]  A. Morelli Inverse Problem Theory , 2010 .

[105]  R. L. Mackie,et al.  Three-dimensional magnetotelluric modelling and inversion , 1989, Proc. IEEE.

[106]  D. Oldenburg,et al.  METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY1 , 1990 .

[107]  D. Jackson The use of a priori data to resolve non‐uniqueness in linear inversion , 1979 .

[108]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[109]  E. Polak,et al.  Computational methods in optimization : a unified approach , 1972 .

[110]  D. Oldenburg,et al.  Subspace linear inverse method , 1994 .

[111]  R. C. Bailey,et al.  Inversion of the geomagnetic induction problem , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[112]  D. Alumbaugh Linearized and nonlinear parameter variance estimation for two-dimensional electromagnetic induction inversion , 2000 .

[113]  D. Oldenburg,et al.  Approximate sensitivities for the electromagnetic inverse problem , 1996 .

[114]  G. Backus,et al.  Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[115]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[116]  Yutaka Sasaki,et al.  Three-dimensional inversion of static-shifted magnetotelluric data , 2004 .