Unlike the synchronous Plasmodium falciparum and P. chabaudi infection, the P. berghei and P. yoelii asynchronous infections are not affected by melatonin

We have previously reported that Plasmodium chabaudi and P. falciparum sense the hormone melatonin and this could be responsible for the synchrony of malaria infection. In P. chabaudi and P. falciparum, melatonin induces calcium release from internal stores, and this response is abolished by U73122, a phospholipase C inhibitor, and luzindole, a melatonin-receptor competitive antagonist. Here we show that, in vitro, melatonin is not able to modulate cell cycle, nor to elicit an elevation in intracellular calcium concentration of the intraerythrocytic forms of P. berghei or P. yoelii, two rodent parasites that show an asynchrononous development in vivo. Interestingly, melatonin and its receptor do not seem to play a role during hepatic infection by P. berghei sporozoites either. These data strengthen the hypothesis that host-derived melatonin does not synchronize malaria infection caused by P. berghei and P. yoelii. Moreover, these data explain why infections by these parasites are asynchronous, contrary to what is observed in P. falciparum and P. chabaudi infections.

[1]  V. Choubey,et al.  Melatonin inhibits free radical‐mediated mitochondrial‐dependent hepatocyte apoptosis and liver damage induced during malarial infection , 2007, Journal of pineal research.

[2]  Virgilio L Lew,et al.  Is invasion efficiency in malaria controlled by pre-invasion events? , 2007, Trends in parasitology.

[3]  L. Meijer,et al.  Antimalarial drug discovery: targeting protein kinases , 2007, Expert opinion on therapeutic targets.

[4]  A. Vaid,et al.  PfPKB, a Protein Kinase B-like Enzyme from Plasmodium falciparum , 2006, Journal of Biological Chemistry.

[5]  L. Sibley,et al.  Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa. , 2006, Molecular biology and evolution.

[6]  Oliver Billker,et al.  Protein kinases as targets for antimalarial intervention: Kinomics, structure-based design, transmission-blockade, and targeting host cell enzymes. , 2005, Biochimica et biophysica acta.

[7]  N. Hall,et al.  Comparative genomics of malaria parasites. , 2005, Current opinion in genetics & development.

[8]  F. Beraldo,et al.  Products of tryptophan catabolism induce Ca2+ release and modulate the cell cycle of Plasmodium falciparum malaria parasites , 2005, Journal of pineal research.

[9]  Celia R. S. Garcia,et al.  Cyclic AMP and calcium interplay as second messengers in melatonin-dependent regulation of Plasmodium falciparum cell cycle , 2005, The Journal of cell biology.

[10]  Ana Rodriguez,et al.  Apoptotic Plasmodium-infected hepatocytes provide antigens to liver dendritic cells. , 2005, The Journal of infectious diseases.

[11]  L. Juliano,et al.  Cysteine-protease activity elicited by Ca2+ stimulus in Plasmodium. , 2005, Molecular and biochemical parasitology.

[12]  S. Hay,et al.  The global distribution of clinical episodes of Plasmodium falciparum malaria , 2005, Nature.

[13]  M. Lanzer,et al.  Protein transport and trafficking in Plasmodium falciparum-infected erythrocytes , 2004, Parasitology.

[14]  U. Tatu,et al.  Recurrent Fever Promotes Plasmodium falciparum Development in Human Erythrocytes* , 2004, Journal of Biological Chemistry.

[15]  Pauline Ward,et al.  Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote , 2004, BMC Genomics.

[16]  Celia R. S. Garcia,et al.  The malaria parasite mitochondrion senses cytosolic Ca2+ fluctuations. , 2004, Biochemical and biophysical research communications.

[17]  R. Novak,et al.  Seasonal abundance, vector behavior, and malaria parasite transmission in Eritrea. , 2004, Journal of the American Mosquito Control Association.

[18]  R. Tewari,et al.  Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite , 2004, Cell.

[19]  C. R. Garcia,et al.  Interruption of the blood-stage cycle of the malaria parasite, Plasmodium chabaudi, by protein tyrosine kinase inhibitors. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[20]  Caroline Ajonina,et al.  Anopheles species of the mount Cameroon region: biting habits, feeding behaviour and entomological inoculation rates , 2003, Tropical medicine & international health : TM & IH.

[21]  M. Berridge,et al.  Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature reviews. Molecular cell biology.

[22]  Tullio Pozzan,et al.  Calcium signaling in a low calcium environment , 2003, The Journal of cell biology.

[23]  B. Nagpal,et al.  Bioecology of An. philippinensis in Andaman group of islands. , 2003, Journal of vector borne diseases.

[24]  Celia R. S. Garcia,et al.  Plasmodium falciparum malaria parasites display a THG-sensitive Ca2+ pool. , 2003, Cell calcium.

[25]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[26]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[27]  M. Tsuji,et al.  Detection of malaria liver-stages in mice infected through the bite of a single Anopheles mosquito using a highly sensitive real-time PCR. , 2001, International journal for parasitology.

[28]  R. Markus,et al.  Tertian and Quartan Fevers: Temporal Regulation in Malarial Infection , 2001, Journal of biological rhythms.

[29]  N. Rayment,et al.  Immunopathology of Cerebral Malaria: Morphological Evidence of Parasite Sequestration in Murine Brain Microvasculature , 2000, Infection and Immunity.

[30]  Tullio Pozzan,et al.  Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. , 2000, Nature Cell Biology.

[31]  K. Kirk,et al.  Membrane transport in the malaria-infected erythrocyte , 2000 .

[32]  S. Luo,et al.  Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. , 2000, The Biochemical journal.

[33]  P. Gautret,et al.  Periodic infectivity of Plasmodium gametocytes to the vector. A review. , 1999, Parasite.

[34]  R. Desowitz Plasmodium berghei in the white rat: severe malaria of pregnancy does not occur in the progeny of mothers infected during gestation. , 1999, Annals of tropical medicine and parasitology.

[35]  Celia R. S. Garcia,et al.  Inositol 1,4,5-trisphosphate induced Ca2+ release from chloroquine-sensitive and -insensitive intracellular stores in the intraerythrocytic stage of the malaria parasite P. chabaudi. , 1998, Biochemical and biophysical research communications.

[36]  Célia R. S. Garcia,et al.  Characterization of Ca2 transport activity associated with a non‐mitochondrial calcium pool in the rodent malaria parasite P. chabaudi , 1997 .

[37]  H. Miyamoto,et al.  Imaging Plasmodium falciparum-infected ghost and parasite by atomic force microscopy. , 1997, Journal of structural biology.

[38]  J. Lytton,et al.  Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. , 1991, The Journal of biological chemistry.

[39]  F. Di Virgilio,et al.  Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. , 1990, Cell calcium.

[40]  L. Pang,et al.  Characterization of a model of malaria in the pregnant host: Plasmodium berghei in the white rat. , 1989, The American journal of tropical medicine and hygiene.

[41]  P. Pévet,et al.  Pineal and circulating melatonin rhythms in the box turtle, Terrapene carolina triunguis: effect of photoperiod, light pulse, and environmental temperature. , 1988, General and comparative endocrinology.

[42]  J. Barnwell,et al.  Studies on parasitic crisis in malaria: I. Signs of impending crisis in Plasmodium berghei infections of the white rat. , 1977, Annals of tropical medicine and parasitology.

[43]  J. Barnwell,et al.  Plasmodium berghei: deep vascular sequestration of young forms in the heart and kidney of the white rat. , 1976, Annals of tropical medicine and parasitology.

[44]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[45]  R. Elliott The influence of vector behavior on malaria transmission. , 1972, The American journal of tropical medicine and hygiene.

[46]  F. Hawking The clock of the malaria parasite. , 1970, Scientific American.

[47]  F. Hawking,et al.  Host temperature and control of 24-hour and 48-hour cycles in malaria parasites. , 1968, Lancet.

[48]  L. A. Stauber Factors influencing the Asexual Periodicity of Avian Malarias. , 1939 .

[49]  Winton Elizabeth Gambrell Variations in Gametocyte Production in Avian Malaria 1 , 1937 .

[50]  W. H. Taliaferro,et al.  MORPHOLOGY, PERIODICITY AND COURSE OF INFECTION OF PLASMODIUM BRASILIANUM IN PANAMANIAN MONKEYS , 1934 .

[51]  O. Thastrup,et al.  Role of Ca2+-ATPases in regulation of cellular Ca2+ signalling, as studied with the selective microsomal Ca2+-ATPase inhibitor, thapsigargin , 2005, Agents and Actions.

[52]  M. Tsuji,et al.  Demonstration of heat-shock protein 70 in the sporozoite stage of malaria parasites , 2004, Parasitology Research.

[53]  R. Docampo,et al.  The acidocalcisome. , 2001, Molecular and biochemical parasitology.

[54]  P. Di Mascio,et al.  Ghost protein damage by peroxynitrite and its protection by melatonin. , 2000, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[55]  F. Hawking,et al.  24- and 48-hour cycles of malaria parasites in the blood; their purpose, production and control. , 1968, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[56]  Winton Elizabeth Gambrell Variations in Gametoeyte Production in Avian Malaria. , 1937 .

[57]  G. H. Boyd INDUCED VARIATIONS IN THE ASEXUAL CYCLE OF PLASMODIUM CATHEMERIUM , 1929 .