Biological control agent selection under environmental change using functional responses, abundances and fecundities; the Relative Control Potential (RCP) metric

[1]  Michael J. Crawley,et al.  The R book , 2022 .

[2]  Ivette Perfecto,et al.  Trait-mediated indirect interactions , 2017 .

[3]  T. G. F. Silva,et al.  Functional and numerical responses of Stethorus tridens Gordon (Coleoptera: Coccinellidae) preying on Tetranychus bastosi Tuttle, Baker & Sales (Acari: Tetranychidae) on physic nut (Jatropha curcas) , 2017 .

[4]  J. H. Huber,et al.  Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals , 2017, PLoS neglected tropical diseases.

[5]  Daniel Barrios-O'Neill,et al.  Predicting predatory impact of juvenile invasive lionfish (Pterois volitans) on a crustacean prey using functional response analysis: effects of temperature, habitat complexity and light regimes , 2017, Environmental Biology of Fishes.

[6]  J. Dick,et al.  Temperature rise and parasitic infection interact to increase the impact of an invasive species. , 2017, International journal for parasitology.

[7]  J. Britton,et al.  Assessing the ecological impacts of invasive species based on their functional responses and abundances , 2017, Biological Invasions.

[8]  S. Leach,et al.  Detection of the invasive mosquito species Aedes albopictus in southern England. , 2017, The Lancet. Infectious diseases.

[9]  Meng Xu,et al.  Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species , 2017, Journal of Applied Ecology.

[10]  A. Rizzoli,et al.  Predation efficiency of copepods against the new invasive mosquito species Aedes koreicus (Diptera: Culicidae) in Italy , 2017 .

[11]  V. Rudolf,et al.  Deadly competition and life-saving predation: the potential for alternative stable states in a stage-structured predator–prey system , 2016, Proceedings of the Royal Society B: Biological Sciences.

[12]  D. Yee Thirty Years of Aedes albopictus (Diptera: Culicidae) in America: An Introduction to Current Perspectives and Future Challenges , 2016, Journal of Medical Entomology.

[13]  G. Benelli,et al.  Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control , 2016, Parasitology Research.

[14]  L. Kramer,et al.  Geographic variation in the response of Culex pipiens life history traits to temperature , 2016, Parasites & Vectors.

[15]  J. R. Lomeli-Flores,et al.  Evaluation of Dicyphus hesperus for biological control of sweet potato whitefly and potato psyllid on greenhouse tomato , 2016, BioControl.

[16]  Daniel Barrios-O'Neill,et al.  Emergent effects of structural complexity and temperature on predator–prey interactions , 2016 .

[17]  J. Delong,et al.  Beyond body mass: how prey traits improve predictions of functional response parameters , 2016, Oecologia.

[18]  A. Rizzoli,et al.  Control methods against invasive Aedes mosquitoes in Europe: a review. , 2015, Pest management science.

[19]  Jiang‐Shiou Hwang,et al.  Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. , 2015, Experimental parasitology.

[20]  S. Leach,et al.  Effect of climate change on vector-borne disease risk in the UK. , 2015, The Lancet. Infectious diseases.

[21]  J. Dick,et al.  Differential ecological impacts of invader and native predatory freshwater amphipods under environmental change are revealed by comparative functional responses , 2015, Biological Invasions.

[22]  R. Bellini,et al.  Macrocyclops albidus (Copepoda: cyclopidae) for the Biocontrol of Aedes albopictus and Culex pipiens in Italy , 2015, Journal of the American Mosquito Control Association.

[23]  M. J. Hatcher,et al.  Eaten alive: cannibalism is enhanced by parasites , 2015, Royal Society Open Science.

[24]  H. MacIsaac,et al.  Predator-free space, functional responses and biological invasions , 2015 .

[25]  J. Delong,et al.  The temperature independence of interaction strength in a sit-and-wait predator , 2014 .

[26]  Helene C. Bovy,et al.  Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator. , 2014, The Journal of animal ecology.

[27]  A. Callaghan,et al.  British Container Breeding Mosquitoes: The Impact of Urbanisation and Climate Change on Community Composition and Phenology , 2014, PloS one.

[28]  Anthony Ricciardi,et al.  Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach , 2014, Biological Invasions.

[29]  W. C. Long,et al.  Cannibalism in red king crab: Habitat, ontogeny, and the predator functional response , 2013 .

[30]  Nessa E. O'Connor,et al.  Trait-mediated indirect interactions in a marine intertidal system as quantified by functional responses , 2013 .

[31]  V. Chevalier Relevance of Rift Valley fever to public health in the European Union. , 2013, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[32]  R. Harbach Culex pipiens: Species Versus Species Complex – Taxonomic History and Perspective , 2012, Journal of the American Mosquito Control Association.

[33]  C. King,et al.  How Does the Ambush Predatory Copepod Megacyclops formosanus (Harada, 1931) Capture Mosquito Larvae of Aedes aegypti? , 2012 .

[34]  R. Manavalan,et al.  Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India , 2012, Pathogens and Global Health.

[35]  Owen L. Petchey,et al.  Universal temperature and body-mass scaling of feeding rates , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  V. S. Nam,et al.  Community-Based Control of Aedes aegypti By Using Mesocyclops in Southern Vietnam , 2012, The American journal of tropical medicine and hygiene.

[37]  Göran Englund,et al.  Temperature dependence of the functional response. , 2011, Ecology letters.

[38]  N. Schweigmann,et al.  Development rates, larval survivorship and wing length of Culex pipiens (Diptera: Culicidae) at constant temperatures , 2011 .

[39]  T. Klemola,et al.  Responses of generalist invertebrate predators to pupal densities of autumnal and winter moths under field conditions , 2009 .

[40]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[41]  K. A. S. Mislan,et al.  Predator–prey interactions under climate change: the importance of habitat vs body temperature , 2009 .

[42]  Benjamin M. Bolker,et al.  Ecological Models and Data in R , 2008 .

[43]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[44]  V. S. Nam,et al.  New strategy against Aedes aegypti in Vietnam , 2005, The Lancet.

[45]  N. Keyghobadi,et al.  Emerging Vectors in the Culex pipiens Complex , 2004, Science.

[46]  P. Kittayapong,et al.  Enhancement of the efficacy of a combination of Mesocyclops aspericornis and Bacillus thuringiensis var. israelensis by community-based products in controlling Aedes aegypti larvae in Thailand. , 2003, The American journal of tropical medicine and hygiene.

[47]  J. Corley,et al.  The Functional Response of Parasitoids and its Implications for Biological Control , 2003 .

[48]  G. Marti,et al.  Laboratory evaluation of Mesocyclops annulatus (Wierzejski, 1892) (Copepoda: Cyclopidea) as a predator of container-breeding mosquitoes in Argentina. , 2002, Memorias do Instituto Oswaldo Cruz.

[49]  P. J. Lester,et al.  Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two‐prey system , 2002 .

[50]  Z. Hubálek,et al.  West Nile fever--a reemerging mosquito-borne viral disease in Europe. , 1999, Emerging infectious diseases.

[51]  T. Mcnelley,et al.  Temperature dependence of , 1993, Metallurgical and Materials Transactions A.

[52]  G. Marten Elimination of Aedes albopictus from tire piles by introducing Macrocyclops albidus (Copepoda, Cyclopidae). , 1990, Journal of the American Mosquito Control Association.

[53]  A. F. Bennett Thermal dependence of locomotor capacity. , 1990, The American journal of physiology.

[54]  J. Laybourn-Parry,et al.  Temperature-dependent energy partitioning in the benthic copepods Acanthocyclops viridis and Macrocyclops albidus , 1988 .

[55]  Joseph Travis,et al.  How can the functional reponse best be determined? , 1988, Oecologia.

[56]  J. Laybourn-Parry,et al.  The distribution and abundance of benthic cyclopoid copepods in Esthwaite Water, Cumbria , 1986, Hydrobiologia.

[57]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[58]  M. Solomon The Natural Control of Animal Populations , 1949 .

[59]  V. Savage,et al.  Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. , 2014, The Journal of animal ecology.

[60]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[61]  R. Huey,et al.  Temperature , Physiology , and the Ecology of Reptiles , 2008 .

[62]  D. Hammond,et al.  Climate change impacts and water temperature. , 2007 .

[63]  M. Goettel,et al.  Introduction of a fungus into North America for control of gypsy moth. , 2007 .

[64]  G. Marten,et al.  CYCLOPOID COPEPODS , 2007, Journal of the American Mosquito Control Association.

[65]  R. Kitney,et al.  Biological Control , 1973, Nature.