Convex liftings-based robust control design

This paper presents a new approach for control design of constrained linear systems affected by bounded additive disturbances and polytopic uncertainties. This method hinges on so-called convex liftings which emulate control Lyapunov function by providing a constructive framework for optimization based control implementation. It will be shown that this method can guarantee the recursive feasibility and robust stability. Finally, a numerical example will be presented to illustrate this method.

[1]  David Q. Mayne,et al.  Robust model predictive control of constrained linear systems with bounded disturbances , 2005, Autom..

[2]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[3]  Robert K. Brayton,et al.  Stability of dynamical systems: A constructive approach , 1979 .

[4]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[5]  Basil Kouvaritakis,et al.  Efficient robust predictive control , 2000, IEEE Trans. Autom. Control..

[6]  Tomas Gal,et al.  Postoptimal Analyses, Parametric Programming, and Related Topics: Degeneracy, Multicriteria Decision Making, Redundancy , 1994 .

[7]  P. Olver Nonlinear Systems , 2013 .

[8]  María M. Seron,et al.  A systematic method to obtain ultimate bounds for perturbed systems , 2007, Int. J. Control.

[9]  Morten Hovd,et al.  A patchy approximation of explicit model predictive control , 2012, Int. J. Control.

[10]  Mario Sznaier,et al.  Suboptimal control of linear systems with state and control inequality constraints , 1987, 26th IEEE Conference on Decision and Control.

[11]  G. Bitsoris Positively invariant polyhedral sets of discrete-time linear systems , 1988 .

[12]  E. Kerrigan Robust Constraint Satisfaction: Invariant Sets and Predictive Control , 2000 .

[13]  Shankar P. Bhattacharyya,et al.  Robust Control Design , 2009 .

[14]  Mircea Lazar,et al.  On infinity norms as Lyapunov functions: Alternative necessary and sufficient conditions , 2010, 49th IEEE Conference on Decision and Control (CDC).

[15]  Alberto Bemporad,et al.  Efficient On-Line Computation of Constrained Optimal Control , 2008, SIAM J. Control. Optim..

[16]  V. Vittal,et al.  Computer generated Lyapunov functions for interconnected systems: Improved results with applications to power systems , 1983, The 22nd IEEE Conference on Decision and Control.

[17]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[18]  Johan A. K. Suykens,et al.  A SIMPLE ALGORITHM FOR ROBUST MPC , 2005 .

[19]  Morten Hovd,et al.  Approximate explicit linear MPC via Delaunay tessellation , 2009, 2009 European Control Conference (ECC).

[20]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: II—Discrete-Time Systems , 1960 .

[21]  Sorin Olaru,et al.  Any discontinuous PWA function is optimal solution to a parametric linear programming problem , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[22]  Sergio Grammatico,et al.  Control-Sharing and Merging Control Lyapunov Functions , 2014, IEEE Transactions on Automatic Control.

[23]  Sorin Olaru,et al.  Inverse parametric linear/quadratic programming problem for continuous PWA functions defined on polyhedral partitions of polyhedra , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[24]  A. M. Li︠a︡punov Problème général de la stabilité du mouvement , 1949 .

[25]  Rolf Findeisen,et al.  Parameterized Tube Model Predictive Control , 2012, IEEE Transactions on Automatic Control.

[26]  Ion Necoara,et al.  Inverse Parametric Convex Programming Problems Via Convex Liftings , 2014 .

[27]  Alberto Bemporad,et al.  Min-max control of constrained uncertain discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[28]  Mato Baotic,et al.  Constrained Optimal Control of Hybrid Systems With a Linear Performance Index , 2006, IEEE Transactions on Automatic Control.

[29]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[30]  D. Chmielewski,et al.  On constrained infinite-time linear quadratic optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[31]  L. Magni,et al.  Lecture Notes in Control and Information Sciences: Preface , 2009 .

[32]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[33]  Hoai-Nam Nguyen,et al.  Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems: An Interpolation-Based Approach , 2013 .

[34]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[35]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[36]  Manfred Morari,et al.  An improved approach for constrained robust model predictive control , 2002, Autom..

[37]  J. A. Rossiter,et al.  Robust MPC algorithms using alternative parameterisations , 2012, Proceedings of 2012 UKACC International Conference on Control.

[38]  Mayuresh V. Kothare,et al.  An e!cient o"-line formulation of robust model predictive control using linear matrix inequalities (cid:1) , 2003 .

[39]  M. Kothare,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[40]  L. Ghaoui,et al.  History of linear matrix inequalities in control theory , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[41]  J. Hennet,et al.  Feedback control of linear discrete-time systems under state and control constraints , 1988 .

[42]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[43]  Sorin Olaru,et al.  Robust control design based on convex liftings , 2015 .

[44]  George Bitsoris,et al.  Constrained regulation of linear systems , 1995, Autom..

[45]  M. Cwikel,et al.  Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states , 1985, 1985 24th IEEE Conference on Decision and Control.

[46]  Sorin Olaru,et al.  Convex Lifting: Theory and Control Applications , 2018, IEEE Transactions on Automatic Control.

[47]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[48]  Franco Blanchini,et al.  Nonquadratic Lyapunov functions for robust control , 1995, Autom..

[49]  Sorin Olaru,et al.  Implications of Inverse Parametric Optimization in Model Predictive Control , 2015 .

[50]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[51]  G. Bitsoris On the positive invariance of polyhedral sets for discrete-time systems , 1988 .

[52]  A. Polański On infinity norms as Lyapunov functions for linear systems , 1995, IEEE Trans. Autom. Control..

[53]  Y. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential and difference inclusions encountered in control theory , 1989 .

[54]  Ion Necoara,et al.  Constructive Solution of Inverse Parametric Linear/Quadratic Programming Problems , 2017, J. Optim. Theory Appl..

[55]  Ion Necoara,et al.  On the lifting problems and their connections with piecewise affine control law design , 2014, 2014 European Control Conference (ECC).

[56]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[57]  F. Blanchini Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions , 1994, IEEE Trans. Autom. Control..

[58]  Ngoc A. Nguyen,et al.  Explicit robust constrained control for linear systems : analysis, implementation and design based on optimization , 2015 .

[59]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[60]  Elena Panteley,et al.  Stability, as told by its developers , 2017 .