Second-order invariant domain preserving ALE approximation of hyperbolic systems
暂无分享,去创建一个
[1] Guglielmo Scovazzi,et al. Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .
[2] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[3] Charbel Farhat,et al. On the significance of the geometric conservation law for flow computations on moving meshes , 2000 .
[4] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[5] A. Jameson,et al. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .
[6] Jean-Luc Guermond,et al. Invariant Domains and Second-Order Continuous Finite Element Approximation for Scalar Conservation Equations , 2017, SIAM J. Numer. Anal..
[7] H. Frid. Maps of Convex Sets and Invariant Regions¶for Finite-Difference Systems¶of Conservation Laws , 2001 .
[8] Mikhail J. Shashkov,et al. Adaptive reconnection-based arbitrary Lagrangian Eulerian method , 2015, J. Comput. Phys..
[9] Jean-Luc Guermond,et al. Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems , 2018, Computer Methods in Applied Mechanics and Engineering.
[10] P. Thomas,et al. Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .
[11] Bojan Popov,et al. Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws , 2007, SIAM J. Sci. Comput..
[12] Ami Harten,et al. Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .
[13] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[14] Jean-Luc Guermond,et al. Well-Balanced Second-Order Finite Element Approximation of the Shallow Water Equations with Friction , 2018, SIAM J. Sci. Comput..
[15] Yong Yang,et al. Invariant Domains Preserving Arbitrary Lagrangian Eulerian Approximation of Hyperbolic Systems with Continuous Finite Elements , 2017, SIAM J. Sci. Comput..
[16] A. Huerta,et al. Arbitrary Lagrangian–Eulerian Methods , 2004 .
[17] Jean-Luc Guermond,et al. Second-Order Invariant Domain Preserving Approximation of the Euler Equations Using Convex Limiting , 2017, SIAM J. Sci. Comput..
[18] Raphaël Loubère,et al. ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..
[19] Bojan Popov,et al. Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations , 2015, J. Comput. Phys..
[20] Benoît Perthame,et al. Maximum principle on the entropy and second-order kinetic schemes , 1994 .
[21] Rémi Abgrall,et al. Staggered Grid Residual Distribution Scheme for Lagrangian Hydrodynamics , 2017, SIAM J. Sci. Comput..
[22] Erik Burman,et al. On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws , 2007 .
[23] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[24] Jean-Luc Guermond,et al. Entropy–viscosity method for the single material Euler equations in Lagrangian frame , 2016 .
[25] Rémi Abgrall,et al. A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids , 2014, J. Comput. Phys..
[26] Charbel Farhat,et al. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .
[27] Guglielmo Scovazzi,et al. Galilean invariance and stabilized methods for compressible flows , 2007 .
[28] C. C. Long,et al. Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates , 2014, J. Comput. Phys..
[29] Tzanio V. Kolev,et al. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..
[30] Mikhail Shashkov,et al. Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .
[31] Michael Dumbser,et al. Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws , 2015, J. Comput. Phys..
[32] Tzanio V. Kolev,et al. High-Order Multi-Material ALE Hydrodynamics , 2018, SIAM J. Sci. Comput..
[33] Michael Dumbser,et al. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics , 2018, J. Comput. Phys..
[34] Bojan Popov,et al. Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems , 2015, SIAM J. Numer. Anal..
[35] John K. Dukowicz,et al. Vorticity errors in multidimensional Lagrangian codes , 1992 .
[36] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[37] Jean-Luc Guermond,et al. Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..
[38] Jean-Luc Guermond,et al. Weighting the Edge Stabilization , 2013, SIAM J. Numer. Anal..
[39] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[40] Jay P. Boris,et al. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .
[41] W. F. Noh,et al. CEL: A TIME-DEPENDENT, TWO-SPACE-DIMENSIONAL, COUPLED EULERIAN-LAGRANGE CODE , 1963 .
[42] D. Serre,et al. About the relative entropy method for hyperbolic systems of conservation laws , 2014 .
[43] J. Kraaijevanger. Contractivity of Runge-Kutta methods , 1991 .
[44] A. J. Barlow,et al. A compatible finite element multi‐material ALE hydrodynamics algorithm , 2008 .
[45] Antony Jameson,et al. Origins and Further Development of the Jameson–Schmidt–Turkel Scheme , 2017 .
[46] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .