Old problems and new challenges in subdivision
暂无分享,去创建一个
[1] Andreas Weinmann,et al. Nonlinear Subdivision Schemes on Irregular Meshes , 2010 .
[2] Malcolm A. Sabin,et al. Analysis and Design of Univariate Subdivision Schemes , 2010, Geometry and Computing.
[3] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[4] U. Reif,et al. C1-continuity of the generalized four-point scheme , 2009 .
[5] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[6] Jörg Peters,et al. Shape characterization of subdivision surfaces--case studies , 2004, Comput. Aided Geom. Des..
[7] Ulrich Reif,et al. On the volume of sets bounded by refinable functions , 2016, Appl. Math. Comput..
[8] Ulrich Reif,et al. Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..
[9] J. Peters,et al. Shape characterization of subdivision surfaces: basic principles , 2004 .
[10] Nicola Guglielmi,et al. Exact Computation of Joint Spectral Characteristics of Linear Operators , 2011, Found. Comput. Math..
[11] Chandrajit L. Bajaj,et al. A subdivision scheme for hexahedral meshes , 2002, The Visual Computer.
[12] U. Reif. TURBS—Topologically Unrestricted Rational B-Splines , 1998 .
[13] Leif Kobbelt,et al. A variational approach to subdivision , 1996, Comput. Aided Geom. Des..
[14] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[15] Neil A. Dodgson,et al. A Circle-Preserving Variant of the Four-Point Subdivision Scheme , 2012 .
[16] Ulrich Reif,et al. Generalized Lane-Riesenfeld algorithms , 2013, Comput. Aided Geom. Des..
[17] Jörg Peters,et al. Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.
[18] Jörg Peters,et al. Guided spline surfaces , 2009, Comput. Aided Geom. Des..
[19] C. Micchelli,et al. Stationary Subdivision , 1991 .
[20] Philipp Grohs,et al. Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..
[21] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[22] Scott Schaefer,et al. Smooth subdivision of tetrahedral meshes , 2004, SGP '04.
[23] Bernhard Mößner,et al. On the joint spectral radius of matrices of order 2 with equal spectral radius , 2010, Adv. Comput. Math..
[24] Johannes Wallner. Smoothness Analysis of Subdivision Schemes by Proximity , 2006 .
[25] M. Sabin,et al. Hölder Regularity of Geometric Subdivision Schemes , 2014, 1401.6341.
[26] Vincent D. Blondel,et al. Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..
[27] U. Reif,et al. A tree-based approach to joint spectral radius determination , 2014 .