Microbial communities in acid mine drainage.

[1]  E. Stackebrandt,et al.  A molecular approach to search for diversity among bacteria in the environment , 1996, Journal of Industrial Microbiology.

[2]  Y. Kosako,et al.  Acidobacterium capsulatum gen. nov., sp. nov.: An acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment , 2005, Current Microbiology.

[3]  J. Banfield,et al.  Acid mine drainage biogeochemistry at Iron Mountain, California , 2004, Geochemical transactions.

[4]  W. Sand,et al.  Sulfur chemistry, biofilm, and the (in)direct attack mechanism — a critical evaluation of bacterial leaching , 1995, Applied Microbiology and Biotechnology.

[5]  D. Kelly,et al.  Mixotrophic and autotrophic growth of Thiobacillus acidophilus on tetrathionate , 1988, Archives of Microbiology.

[6]  H. Karlsson,et al.  Oxidation of pyrite by Acidianus brierleyi: Importance of close contact between the pyrite and the microorganisms , 2004, Biotechnology Letters.

[7]  Jean-Louis Garcia,et al.  Isolation and study of two strains ofLeptospirillum-like bacteria from a natural mixed population cultured on a cobaltiferous pyrite substrate , 2004, Antonie van Leeuwenhoek.

[8]  J. Banfield,et al.  Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe3 , 2003 .

[9]  J. Banfield,et al.  Kinetics and Mechanism of Trithionate and Tetrathionate Oxidation at Low pH by Hydroxyl Radicals , 2003 .

[10]  J. Banfield,et al.  Arsenic resistance in the archaeon "Ferroplasma acidarmanus": new insights into the structure and evolution of the ars genes , 2003, Extremophiles.

[11]  H. Drake,et al.  Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions. , 2002, Environmental microbiology.

[12]  M. Sogin,et al.  Microbiology: Eukaryotic diversity in Spain's River of Fire , 2002, Nature.

[13]  D. Rawlings,et al.  Molecular Relationship between Two Groups of the Genus Leptospirillum and the Finding that Leptospirillum ferriphilum sp. nov. Dominates South African Commercial Biooxidation Tanks That Operate at 40°C , 2002, Applied and Environmental Microbiology.

[14]  J. Banfield,et al.  The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution , 2001 .

[15]  K B Hallberg,et al.  Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. , 2001, Environmental microbiology.

[16]  J. Banfield,et al.  Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution , 2001 .

[17]  D. Johnson,et al.  Biological versus abiotic oxidation of iron in acid mine drainage waters: an important role for moderately acidophilic, iron-oxidising bacteria. , 2001 .

[18]  Banfield,et al.  A new look at microbial leaching patterns on sulfide minerals. , 2001, FEMS microbiology ecology.

[19]  M. Cottrell,et al.  Community Composition of Marine Bacterioplankton Determined by 16S rRNA Gene Clone Libraries and Fluorescence In Situ Hybridization , 2000, Applied and Environmental Microbiology.

[20]  J. Banfield,et al.  Comparison of Acid Mine Drainage Microbial Communities in Physically and Geochemically Distinct Ecosystems , 2000, Applied and Environmental Microbiology.

[21]  E. Koonin,et al.  Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. , 2000, Environmental microbiology.

[22]  P. Norris,et al.  Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis , 2000, Extremophiles.

[23]  D. Hough,et al.  A microbiological survey of Montserrat Island hydrothermal biotopes , 2000, Extremophiles.

[24]  Dmitrij Frishman,et al.  The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum , 2000, Nature.

[25]  J. Banfield,et al.  Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California , 2000 .

[26]  J. Banfield,et al.  Phylogeny of Microorganisms Populating a Thick, Subaerial, Predominantly Lithotrophic Biofilm at an Extreme Acid Mine Drainage Site , 2000, Applied and Environmental Microbiology.

[27]  A. Reysenbach,et al.  Novel Bacterial and Archaeal Lineages from an In Situ Growth Chamber Deployed at a Mid-Atlantic Ridge Hydrothermal Vent , 2000, Applied and Environmental Microbiology.

[28]  D. Johnson,et al.  Reductive Dissolution of Ferric Iron Minerals by Acidiphilium SJH , 2000 .

[29]  Mark Hernandez,et al.  Development and Application of Small-Subunit rRNA Probes for Assessment of Selected Thiobacillus Species and Members of the Genus Acidiphilium , 2000, Applied and Environmental Microbiology.

[30]  A. Hiraishi,et al.  Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. , 2000, International journal of systematic and evolutionary microbiology.

[31]  A. Elbehti,et al.  First Evidence for Existence of an Uphill Electron Transfer through the bc1 and NADH-Q Oxidoreductase Complexes of the Acidophilic Obligate Chemolithotrophic Ferrous Ion-Oxidizing Bacterium Thiobacillus ferrooxidans , 2000, Journal of bacteriology.

[32]  J. Banfield,et al.  Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: a chemotactic response to sulphur minerals? , 2000, Environmental microbiology.

[33]  K. Timmis,et al.  Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. , 2000, International journal of systematic and evolutionary microbiology.

[34]  J. Banfield,et al.  An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. , 2000, Science.

[35]  D. Kelly,et al.  Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. , 2000, International journal of systematic and evolutionary microbiology.

[36]  H. Hippe Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). , 2000, International journal of systematic and evolutionary microbiology.

[37]  E. Delong,et al.  Culture-Dependent and Culture-Independent Characterization of Microbial Assemblages Associated with High-Temperature Petroleum Reservoirs , 2000, Applied and Environmental Microbiology.

[38]  D. Johnson,et al.  Phylogenetic and Biochemical Diversity among Acidophilic Bacteria That Respire on Iron , 2000 .

[39]  E. Stackebrandt,et al.  Microbial Reduction of Fe(III) in Acidic Sediments: Isolation of Acidiphilium cryptum JF-5 Capable of Coupling the Reduction of Fe(III) to the Oxidation of Glucose , 1999, Applied and Environmental Microbiology.

[40]  Jillian F. Banfield,et al.  Seasonal Variations in Microbial Populations and Environmental Conditions in an Extreme Acid Mine Drainage Environment , 1999, Applied and Environmental Microbiology.

[41]  P. Holmes,et al.  Mechanism of Pyrite Dissolution in the Presence ofThiobacillus ferrooxidans , 1999, Applied and Environmental Microbiology.

[42]  J. Banfield,et al.  Geomicrobiology of Pyrite (FeS2) Dissolution: Case Study at Iron Mountain, California , 1999 .

[43]  J. Prosser,et al.  Molecular Analysis of Bacterial Community Structure and Diversity in Unimproved and Improved Upland Grass Pastures , 1999, Applied and Environmental Microbiology.

[44]  D. Johnson,et al.  Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures , 1999, Applied and Environmental Microbiology.

[45]  M. Dopson,et al.  Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching , 1999, Applied and Environmental Microbiology.

[46]  A. Yahya,et al.  Novel mineral-oxidizing bacteria from Montserrat (W.I.): physiological and phylogenetic characteristics , 1999 .

[47]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[48]  J. Banfield,et al.  Microbial oxidation of pyrite; experiments using microorganisms from an extreme acidic environment , 1998 .

[49]  D. Johnson,et al.  Biodiversity and ecology of acidophilic microorganisms , 1998 .

[50]  Philip Hugenholtz,et al.  Microbial Diversity in a Hydrocarbon- and Chlorinated-Solvent-Contaminated Aquifer Undergoing Intrinsic Bioremediation , 1998, Applied and Environmental Microbiology.

[51]  F. Brockman,et al.  Phylogenetic Diversity of Archaea and Bacteria in a Deep Subsurface Paleosol , 1998, Microbial Ecology.

[52]  D. Johnson,et al.  Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria , 1998, Applied and Environmental Microbiology.

[53]  Banfield,et al.  Distribution of thiobacillus ferrooxidans and leptospirillum ferrooxidans: implications for generation of acid mine drainage , 1998, Science.

[54]  N. Pace,et al.  Novel Division Level Bacterial Diversity in a Yellowstone Hot Spring , 1998, Journal of bacteriology.

[55]  C. Kuske,et al.  Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions , 1997, Applied and environmental microbiology.

[56]  Mark V Brown,et al.  Diversity and association of psychrophilic bacteria in Antarctic sea ice , 1997, Applied and environmental microbiology.

[57]  D. Nordstrom,et al.  Bacterially mediated mineral formation; insights into manganese(II) oxidation from molecular genetic and biochemical studies , 1997 .

[58]  D. Johnson,et al.  Heterotrophic Acidophiles and Their Roles in the Bioleaching of Sulfide Minerals , 1997 .

[59]  M. Boissinot,et al.  Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium. , 1996, International journal of systematic bacteriology.

[60]  J. Borneman,et al.  Molecular microbial diversity of an agricultural soil in Wisconsin , 1996, Applied and environmental microbiology.

[61]  A. K. Mishra,et al.  Role of Thiobacillus ferrooxidans and sulphur (sulphide)-dependent ferric-ion-reducing activity in the oxidation of sulphide minerals , 1996, Applied Microbiology and Biotechnology.

[62]  P. Norris,et al.  Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. , 1996, Microbiology.

[63]  C. Schleper,et al.  Life at extremely low pH , 1995, Nature.

[64]  K. Stetter,et al.  Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany , 1995 .

[65]  E. Stackebrandt,et al.  Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments , 1994, Applied and environmental microbiology.

[66]  D. Johnson,et al.  Effects of acidophilic protozoa on populations of metal-mobilizing bacteria during the leaching of pyritic coal , 1993 .

[67]  P. Bos,et al.  Anaerobic Growth of Thiobacillus ferrooxidans , 1992, Applied and environmental microbiology.

[68]  W. Sand,et al.  Evaluation of Leptospirillum ferrooxidans for Leaching , 1992, Applied and environmental microbiology.

[69]  O. Golyshina,et al.  A NEW IRON-OXIDIZING BACTERIUM, LEPTOSPIRILLUM-THERMOFERROOXIDANS SP-NOV , 1992 .

[70]  F. Boogerd,et al.  Relative contributions of biological and chemical reactions to the overall rate of pyrite oxidation at temperatures between 30°C and 70°C , 1991, Biotechnology and bioengineering.

[71]  D. Johnson,et al.  Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria , 1991, Applied and environmental microbiology.

[72]  K. Stetter,et al.  Metallosphaera sedula gen, and sp. nov. Represents a New Genus of Aerobic, Metal-Mobilizing, Thermoacidophilic Archaebacteria , 1989 .

[73]  K. Stetter,et al.  Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from Solfatara Fields , 1988 .

[74]  P. Norris,et al.  Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate , 1986 .

[75]  P. Norris,et al.  Growth and iron oxidation by acidophilic moderate thermophiles , 1985 .

[76]  A. P. Harrison The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. , 1984, Annual review of microbiology.

[77]  P. Norris,et al.  Dissolution of pyrite (FeS2) by pure and mixed cultures of some acidophilic bacteria , 1978 .

[78]  H. Tributsch,et al.  Bacterial leaching patterns on pyrite crystal surfaces , 1978, Journal of bacteriology.

[79]  T. D. Brock,et al.  Ferric iron reduction by sulfur- and iron-oxidizing bacteria , 1976, Applied and environmental microbiology.

[80]  Zavarzin Ga,et al.  Leptospirillum ferrooxidans and characteristics of its autotrophic growth , 1974 .

[81]  G. Zavarzin,et al.  [Leptospirillum ferrooxidans and characteristics of its autotrophic growth]. , 1974, Mikrobiologiia.

[82]  T. D. Brock,et al.  A Thermophilic, Acidophilic Mycoplasma Isolated from a Coal Refuse Pile , 1970, Science.

[83]  P. Singer,et al.  Acidic Mine Drainage: The Rate-Determining Step , 1970, Science.

[84]  B. Bubela,et al.  A simple semiautomatic apparatus for adaptation of microorganisms to a new medium , 1966 .

[85]  H. Ehrlich,et al.  Microbial Formation and Degradation of Minerals , 1964 .

[86]  H. Ehrlich MICROORGANISMS IN ACID DRAINAGE FROM A COPPER MINE , 1963, Journal of bacteriology.