Fuzzy Turing machines: Normal form and limitative theorems

Abstract A normal form for fuzzy Turing machines is proposed and examined. This normal form is arithmetical in nature since the truth values are substituted by n -ples of natural numbers and the operation interpreting the conjunction becomes a sort of truncated sum. Also, some of the results in the paper enable us to emphasize the inadequacy of the notion of fuzzy Turing machine for fuzzy computability, i.e. that this notion is not a good candidate for a ‘Church thesis’ in the fuzzy mathematics framework.

[1]  Benjamín R. C. Bedregal,et al.  On the computing power of fuzzy Turing machines , 2008, Fuzzy Sets Syst..

[2]  Lotfi A. Zadeh,et al.  Fuzzy Algorithms , 1968, Inf. Control..

[3]  Jirí Wiedermann,et al.  Fuzzy Turing Machines Revised , 2002, Comput. Artif. Intell..

[4]  Jirí Wiedermann,et al.  Characterizing the super-Turing computing power and efficiency of classical fuzzy Turing machines , 2004, Theor. Comput. Sci..

[5]  Giangiacomo Gerla Comments on some theories of fuzzy computation , 2016, Int. J. Gen. Syst..

[6]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[7]  Giangiacomo Gerla,et al.  Fuzzy logic, continuity and effectiveness , 2002, Arch. Math. Log..

[8]  K. Evans,et al.  Totally Ordered Commutative Monoids , 2001 .

[9]  Yongming Li,et al.  Lattice-valued fuzzy Turing machines: Computing power, universality and efficiency , 2009, Fuzzy Sets Syst..

[10]  V. Novák,et al.  Mathematical Principles of Fuzzy Logic , 1999 .

[11]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[12]  Peter Vojtás,et al.  Fuzzy logic programming , 2001, Fuzzy Sets Syst..

[13]  Bruno Scarpellini Die Nichtaxiomatisierbarkeit des Unendlichwertigen Pradikatenkalkuls von Lukasiewicz , 1962, J. Symb. Log..

[14]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[15]  Eugene S. Santos Identification of Stochastic Finite-State Systems , 1972, Inf. Control..

[16]  Radim Belohlávek,et al.  Pavelka-style fuzzy logic in retrospect and prospect , 2015, Fuzzy Sets Syst..

[17]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[18]  Benjamín R. C. Bedregal,et al.  Classical Computability and Fuzzy Turing Machines , 2006, LATIN.

[19]  Apostolos Syropoulos Theory of Fuzzy Computation , 2013 .

[20]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[21]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[22]  Giangiacomo Gerla Fuzzy Logic Programming and Fuzzy Control , 2005, Stud Logica.

[23]  Giangiacomo Gerla Effectiveness and multivalued logics , 2006, J. Symb. Log..