Crossed Andreev reflection in topological insulator nanowire T junctions

We numerically study crossed Andreev reflection (CAR) in a topological insulator nanowire T-junction where one lead is proximitized by a superconductor. We perform realistic simulations based on the 3D BHZ model and compare the results with those from an effective 2D surface model, whose computational cost is much lower. Both approaches show that CAR should be clearly observable in a wide parameter range, including perfect CAR in a somewhat more restricted range. Furthermore, it can be controlled by a magnetic field and is robust to disorder. Our effective 2D implementation allows to model systems of micronsize, typical of experimental setups, but computationally too heavy for 3D models.

[1]  R. Peierls,et al.  Zur Theorie des Diamagnetismus von Leitungselektronen , 1933 .

[2]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[3]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[4]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[5]  R. Stacey,et al.  Eliminating lattice fermion doubling , 1982 .

[6]  F. Wilczek,et al.  Lattice fermions. , 1987, Physical review letters.

[7]  Phase coherent transport in hybrid superconducting nanostructures , 1997, cond-mat/9708056.

[8]  G. Deutscher,et al.  Coupling superconducting-ferromagnetic point contacts by Andreev reflections , 2000 .

[9]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[10]  D. Loss,et al.  Andreev tunneling, Coulomb blockade, and resonant transport of nonlocal spin-entangled electrons , 2000, cond-mat/0009452.

[11]  G. B. Lesovik,et al.  Electronic entanglement in the vicinity of a superconductor , 2000, cond-mat/0009193.

[12]  J. Cayssol Crossed Andreev reflection in a graphene bipolar transistor. , 2008, Physical review letters.

[13]  D. Loss,et al.  1 3 O ct 2 00 0 Andreev-Tunneling , Coulomb Blockade , and Resonant Transport of Non-Local Spin-Entangled Electrons , 2008 .

[14]  C. Beenakker,et al.  Splitting of a Cooper pair by a pair of Majorana bound states. , 2008, Physical review letters.

[15]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[16]  Dung-Hai Lee Surface states of topological insulators: the Dirac fermion in curved two-dimensional spaces. , 2009, Physical review letters.

[17]  C. Schönenberger,et al.  Cooper pair splitter realized in a two-quantum-dot Y-junction , 2009, Nature.

[18]  A. Mirlin,et al.  Interaction-induced criticality in Z(2) topological insulators. , 2009, Physical review letters.

[19]  X. Waintal,et al.  Crossed Andreev reflection versus electron transfer in three-terminal graphene devices , 2009, 0909.4654.

[20]  Yi Zhang,et al.  Anomalous Aharonov-Bohm conductance oscillations from topological insulator surface states. , 2010, Physical review letters.

[21]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[22]  J. Cayssol,et al.  Probing the helical edge states of a topological insulator by Cooper-pair injection , 2010, Physical Review B.

[23]  Haijun Zhang,et al.  Model Hamiltonian for topological insulators , 2010, 1005.1682.

[24]  A. Yeyati,et al.  Carbon nanotubes as cooper-pair beam splitters. , 2009, Physical review letters.

[25]  J. E. Moore,et al.  Aharonov-Bohm oscillations in disordered topological insulator nanowires. , 2010, Physical review letters.

[26]  O. Vafek Quantum Hall effect in a singly and doubly connected three-dimensional topological insulator , 2011, 1110.2508.

[27]  Wei Chen,et al.  Resonant nonlocal Andreev reflection in a narrow quantum spin Hall system , 2011 .

[28]  A. Cook,et al.  Majorana fermions in a topological-insulator nanowire proximity-coupled to an s -wave superconductor , 2011 .

[29]  X. Xie,et al.  Three-dimensional topological insulator in a magnetic field: chiral side surface states and quantized Hall conductance , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  M. M. Vazifeh,et al.  Stability of Majorana Fermions in Proximity-Coupled Topological Insulator Nanowires , 2012, 1206.3829.

[31]  Spin‐helical transport in normal and superconducting topological insulators , 2012, 1208.1466.

[32]  P. Recher,et al.  Proposal for an all-electrical detection of crossed Andreev reflection in topological insulators. , 2012, Physical review letters.

[33]  F. de Juan,et al.  Robust transport signatures of topological superconductivity in topological insulator nanowires. , 2014, Physical review letters.

[34]  L. Brey,et al.  Electronic states of wires and slabs of topological insulators: Quantum Hall effects and edge transport , 2013, 1312.5593.

[35]  M. Wimmer,et al.  Kwant: a software package for quantum transport , 2013, 1309.2926.

[36]  F. Cr'epin,et al.  Odd-frequency triplet superconductivity at the helical edge of a topological insulator , 2015, 1503.07784.

[37]  S. F. Islam,et al.  Enhancement of crossed Andreev reflection in a normal-superconductor-normal junction made of thin topological insulator , 2017, 1704.04112.

[38]  C. Gorini,et al.  Probing spin helical surface states in topological HgTe nanowires , 2017, 1708.07014.

[39]  B. Trauzettel,et al.  Conductance signatures of odd-frequency superconductivity in quantum spin Hall systems using a quantum point contact , 2018, 1802.10541.

[40]  P. Burset,et al.  Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering. , 2017, Physical review letters.

[41]  Daniel Rosenbach,et al.  Magnetotransport signatures of three-dimensional topological insulator nanostructures , 2018, 1801.09230.

[42]  Kunhua Zhang,et al.  Electrically tunable crossed Andreev reflection in a ferromagnet–superconductor–ferromagnet junction on a topological insulator , 2018 .

[43]  G. W. Winkler,et al.  Unified numerical approach to topological semiconductor-superconductor heterostructures , 2018, Physical Review B.

[44]  F. D. Juan,et al.  Conditions for fully gapped topological superconductivity in topological insulator nanowires , 2018, SciPost Physics.

[45]  Patrick R. Amestoy,et al.  Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures , 2019, ACM Trans. Math. Softw..

[46]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[47]  Abdur Rehman Jalil,et al.  Quantum Transport in Topological Surface States of Selectively Grown Bi2Te3 Nanoribbons , 2020, Advanced Electronic Materials.

[48]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[49]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.