Stability of isoperimetric inequalities for Laplace eigenvalues on surfaces

We prove stability estimates for the isoperimetric inequalities for the first and the second nonzero Laplace eigenvalues on surfaces, both globally and in a fixed conformal class. We employ the notion of eigenvalues of measures and show that if a normalized eigenvalue is close to its maximal value, the corresponding measure must be close in the Sobolev space W−1,2 to the set of maximizing measures. In particular, this implies a qualitative stability result: metrics almost maximizing the normalized eigenvalue must be W−1,2–close to a maximal metric. Following this approach, we prove sharp quantitative stability of the celebrated Hersch’s inequality for the first eigenvalue on the sphere, as well as of its counterpart for the second eigenvalue. Similar results are also obtained for the precise isoperimetric eigenvalue inequalities on the projective plane, torus, and Klein bottle. The square of the W−1,2 distance to a maximizing measure in these stability estimates is controlled by the difference between the normalized eigenvalue and its maximal value, indicating that the maxima are in a sense nondegenerate. We construct examples showing that the power of the distance can not be improved, and that the choice of the Sobolev space W−1,2 is optimal.

[1]  Shing-Tung Yau,et al.  A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .

[2]  J. Marsden,et al.  The Manifold of Conformally Equivalent Metrics , 1977, Canadian Journal of Mathematics.

[3]  Rémi Peyre Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance , 2011, ESAIM: Control, Optimisation and Calculus of Variations.

[4]  R. Kusner,et al.  On the index of minimal 2-tori in the 4-sphere , 2018, 1803.01615.

[5]  Nicholas J. Korevaar Upper bounds for eigenvalues of conformal metrics , 1993 .

[6]  Ahmad El Soufi,et al.  Riemannian manifolds admitting isometric immersions by their first eigenfunctions , 2000 .

[7]  Nikolai Nadirashvili,et al.  The Erwin Schrr Odinger International Institute for Mathematical Physics Berger's Isoperimetric Problem and Minimal Immersions of Surfaces Berger's Isoperimetric Problem and Minimal Immersions of Surfaces , 2022 .

[8]  F. Urbano,et al.  Second variation of superminimal surfaces into self-dual Einstein four-manifolds , 1997 .

[9]  N. Nadirashvili Isoperimetric Inequality for the Second Eigenvalue of a Sphere , 2002 .

[10]  Laplacian eigenvalue functionals and metric deformations on compact manifolds , 2007, math/0701777.

[11]  G. Kokarev Variational aspects of Laplace eigenvalues on Riemannian surfaces , 2011, 1103.2448.

[12]  Asma Hassannezhad Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem , 2011 .

[13]  N. Nadirashvili,et al.  An isoperimetric inequality for Laplace eigenvalues on the sphere , 2017, Journal of Differential Geometry.

[14]  J. Moore Second Variation of Energy for Minimal Surfaces in Riemannian Manifolds , 2007 .

[15]  N. Nadirashvili,et al.  How large can the first eigenvalue be on a surface of genus two , 2005, math/0509398.

[16]  F. Béthuel Weak limits of Palais-Smale sequences for a class of critical functionals , 1993 .

[17]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[18]  M. Karpukhin Index of minimal spheres and isoperimetric eigenvalue inequalities , 2019, 1905.03174.

[19]  Iosif Polterovich,et al.  Maximization of the second positive Neumann eigenvalue for planar domains , 2008, 0801.2142.

[20]  S. Nayatani,et al.  Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian , 2017, Comptes Rendus Mathematique.

[21]  S. Ilias,et al.  Immersions minimales, première valeur propre du laplacien et volume conforme , 1986 .

[22]  Leon Simon,et al.  Lectures on Geometric Measure Theory , 1984 .

[23]  A. Ros,et al.  Sur la première valeur propre des tores , 1997 .

[24]  A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle , 2006, math/0701773.

[25]  Anna Siffert,et al.  Handle attachment and the normalized first eigenvalue. , 2019, 1909.03105.

[26]  R. Petrides Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces , 2013, 1310.4697.

[27]  N. Fusco,et al.  The sharp quantitative isoperimetric inequality , 2008 .

[28]  T. Giorgi,et al.  Bounds and monotonicity for the generalized Robin problem , 2008 .

[29]  A. Girouard Fundamental Tone, Concentration of Density, and Conformal Degeneration on Surfaces , 2009, Canadian Journal of Mathematics.

[30]  D. Burago,et al.  Spectral Stability of Metric-Measure Laplacians , 2015, Israel Journal of Mathematics.

[31]  B. Colbois,et al.  Extremal Eigenvalues of the Laplacian in a Conformal Class of Metrics: The `Conformal Spectrum' , 2003, math/0409316.

[32]  D. Cianci,et al.  On branched minimal immersions of surfaces by first eigenfunctions , 2017, Annals of Global Analysis and Geometry.

[33]  Robert Gulliver,et al.  A Theory of Branched Immersions of Surfaces , 1973 .

[34]  N. Nadirashvili,et al.  MULTIPLE EIGENVALUES OF THE LAPLACE OPERATOR , 1988 .

[35]  A. A. Lacey,et al.  Multidimensional Reaction Diffusion Equations with Nonlinear Boundary Conditions , 1998, SIAM J. Appl. Math..

[36]  R. P. Sperb Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran , 1972 .

[37]  A. Ros,et al.  Minimal immersions of surfaces by the first Eigenfunctions and conformal area , 1986 .

[38]  N. Ejiri,et al.  Comparison between second variation of area and second variation of energy of a minimal surface , 2007, 0708.2188.

[39]  Stefan Steinerberger,et al.  Transport and Interface: An Uncertainty Principle for the Wasserstein Distance , 2020, SIAM J. Math. Anal..

[40]  Frédéric Hélein,et al.  Harmonic Maps, Conservation Laws, And Moving Frames , 2002 .

[41]  Extremal Metric for the First Eigenvalue on a Klein Bottle , 2003, Canadian Journal of Mathematics.

[42]  Karen Uhlenbeck,et al.  Boundary regularity and the Dirichlet problem for harmonic maps , 1983 .