Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models

Computational aspects of likelihood-based estimation of univariate ARFIMA(p,d,q) models are addressed. Particular issues are the numerically stable evaluation of the autocovariances and efficient handling of the variance matrix which has dimension equal to the sample size. It is shown how efficient computation and simulation are feasible, even for large samples. Implementation of analytical bias corrections in ARFIMA regression models is also discussed.

[1]  Marius Ooms,et al.  A Package for Estimating, Forecasting and Simulating Arfima Models: Arfima package 1.0 for Ox , 1999 .

[2]  Fallaw Sowell Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .

[3]  Maxwell L. King,et al.  Estimation and testing of regression disturbances based on modified likelihood functions , 1998 .

[4]  T. Bollerslev,et al.  Equity trading volume and volatility: Latent information arrivals and common long-run dependencies , 1999 .

[5]  W. D. Ray Time series models, second edition : Andrew C. Harvey, 1993, (Harvester-Wheatsheaf, New York) xviii + 308 pp., [UK pound]14.99 (paperback), ISBN 0-7450-1200-0 , 1993 .

[6]  Wilfredo Palma,et al.  State space modeling of long-memory processes , 1998 .

[7]  Jurgen A. Doornik,et al.  Object-orientd matrix programming using OX , 1996 .

[8]  D. Firth Bias reduction of maximum likelihood estimates , 1993 .

[9]  Stanley E. Zin,et al.  Fractional integration with drift: estimation in small samples , 1997 .

[10]  Marius Ooms,et al.  Inference and Forecasting for Fractional Autoregressive Integrated Moving Average Models, with an application to US and UK inflation , 1999 .

[11]  Offer Lieberman Penalised maximum likelihood estimation for fractional Gaussian processes , 2001 .

[12]  Nalini Ravishanker,et al.  Exact Likelihood Function Forms for an ARFIMA Process , 1996 .

[13]  Richard Startz,et al.  Maximum-Likelihood Estimation of Fractional Cointegration with an Application to U.S. and Canadian Bond Rates , 1998, Review of Economics and Statistics.

[14]  A. F. M. Smith,et al.  REPARAMETRIZATION ASPECTS OF NUMERICAL BAYESIAN METHODOLOGY FOR AUTOREGRESSIVE MOVING-AVERAGE MODELS , 1992 .

[15]  Steve Beveridge,et al.  Estimating fractionally integrated time series models , 1993 .

[16]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[17]  G Tunnicliffe-Wilson On the Use of Marginal Likelihood in Time Series Model Estimation. , 1983 .

[18]  D. Harville Bayesian inference for variance components using only error contrasts , 1974 .

[19]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[20]  C. Ansley An algorithm for the exact likelihood of a mixed autoregressive-moving average process , 1979 .

[21]  Nalini Ravishanker,et al.  BAYESIAN ANALYSIS OF VECTOR ARFIMA PROCESSES , 1997 .

[22]  Richard T. Baillie,et al.  Small sample bias in conditional sum-of-squares estimators of fractionally integrated ARMA models , 1993 .

[23]  Jurgen A. Doornik,et al.  Statistical algorithms for models in state space using SsfPack 2.2 , 1999 .

[24]  A. Harvey Time series models , 1983 .

[25]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[26]  Jan Beran,et al.  Maximum Likelihood Estimation of the Differencing Parameter for Invertible Short and Long Memory Autoregressive Integrated Moving Average Models , 1995 .

[27]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[28]  Gregory C. Reinsel,et al.  Bias Reduction of Autoregressive Estimates in Time Series Regression Model through Restricted Maximum Likelihood , 2000 .

[29]  William H. Press,et al.  Numerical recipes in C , 2002 .