Nonlinear Lagrangian for Multiobjective Optimization and Applications to Duality and Exact Penalization

Duality and penalty methods are popular in optimization. The study on duality and penalty methods for nonconvex multiobjective optimization problems is very limited. In this paper, we introduce vector-valued nonlinear Lagrangian and penalty functions and formulate nonlinear Lagrangian dual problems and nonlinear penalty problems for multiobjective constrained optimization problems. We establish strong duality and exact penalization results. The strong duality is an inclusion between the set of infimum points of the original multiobjective constrained optimization problem and that of the nonlinear Lagrangian dual problem. Exact penalization is established via a generalized calmness-type condition.

[1]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[2]  Diethard Pallaschke,et al.  Foundations of Mathematical Optimization , 1997 .

[3]  Eric Rosenberg,et al.  Exact penalty functions and stability in locally Lipschitz programming , 1984, Math. Program..

[4]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[5]  Duan Li Zero duality gap for a class of nonconvex optimization problems , 1995 .

[6]  Erik J. Balder,et al.  An Extension of Duality-Stability Relations to Nonconvex Optimization Problems , 1977 .

[7]  James V. Burke,et al.  Calmness and exact penalization , 1991 .

[8]  Xiaoqi Yang,et al.  Extended Lagrange And Penalty Functions in Continuous Optimization , 1999 .

[9]  D. J. White,et al.  Multiobjective programming and penalty functions , 1984 .

[10]  A. Mukherjea,et al.  Real and Functional Analysis , 1978 .

[11]  C. Goh,et al.  Nonlinear Lagrangian Theory for Nonconvex Optimization , 2001 .

[12]  X. Q. Yang,et al.  Decreasing Functions with Applications to Penalization , 1999, SIAM J. Optim..

[13]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[14]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[15]  V. G. Zhadan,et al.  Exact auxiliary functions in optimization problems , 1991 .

[16]  Xiaoqi Yang Second-order global optimality conditions for convex composite optimization , 1998, Math. Program..

[17]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[18]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[19]  Jane J. Ye,et al.  Optimality Conditions for Optimization Problems with Complementarity Constraints , 1999, SIAM J. Optim..

[20]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[21]  Xiaoqi Yang,et al.  Convex composite multi-objective nonsmooth programming , 1993, Math. Program..