Effect of graphene and CNFs addition on the mechanical and electrical properties of dense alumina-toughened zirconia composites

[1]  S. Grasso,et al.  In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite , 2014 .

[2]  A. Rincón,et al.  Al2O3-3YTZP-Graphene multilayers produced by tape casting and spark plasma sintering , 2014 .

[3]  C. Ramírez,et al.  Toughening in ceramics containing graphene fillers , 2014 .

[4]  A. Rincón,et al.  Tape casting of alumina/zirconia suspensions containing graphene oxide , 2014 .

[5]  A. Muñoz,et al.  Effect of high SWNT content on the room temperature mechanical properties of fully dense 3YTZP/SWNT composites , 2014 .

[6]  Seong‐Hyeon Hong,et al.  Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics , 2014 .

[7]  J. C. Fariñas,et al.  Rheological behaviour of submicron mullite–carbon nanofiber suspensions for Atmospheric Plasma Spraying coatings , 2014 .

[8]  A. Centeno,et al.  Graphene for tough and electroconductive alumina ceramics , 2013 .

[9]  M. Terrones,et al.  Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering , 2013 .

[10]  H. Yan,et al.  Toughening of zirconia/alumina composites by the addition of graphene platelets , 2012 .

[11]  C. Balázsi,et al.  Microstructure and fracture toughness of Si3N4 + graphene platelet composites , 2012 .

[12]  A. Domínguez-Rodríguez,et al.  Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites , 2012 .

[13]  A. Borrell,et al.  Alumina–Carbon Nanofibers Nanocomposites Obtained by Spark Plasma Sintering for Proton Exchange Membrane Fuel Cell Bipolar Plates , 2012 .

[14]  K. Novoselov,et al.  The mechanics of graphene nanocomposites: A review , 2012 .

[15]  B. Jacquot,et al.  Confocal Raman microscopic analysis of the zirconia/feldspathic ceramic interface. , 2012, Dental materials : official publication of the Academy of Dental Materials.

[16]  R. Moreno,et al.  Comparison of freeze drying and spray drying to obtain porous nanostructured granules from nanosized suspensions , 2012 .

[17]  R. Moreno,et al.  Dense nanostructured zirconia compacts obtained by colloidal filtration of binary mixtures , 2012 .

[18]  A. Borrell,et al.  Effect of CNFs content on the tribological behaviour of spark plasma sintering ceramic-CNFs composites , 2012 .

[19]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[20]  D. Mari,et al.  Processing of yttria stabilized zirconia reinforced with multi-walled carbon nanotubes with attractive mechanical properties , 2011 .

[21]  A. Borrell,et al.  Improvement of Carbon Nanofibers/ZrO2 Composites Properties with a Zirconia Nanocoating on Carbon Nanofibers by Sol–Gel Method , 2011 .

[22]  J. Chevalier,et al.  Zirconia–multiwall carbon nanotubes dense nano-composites with an unusual balance between crack and ageing resistance , 2011 .

[23]  Andrew T. S. Wee,et al.  Electronic structure of graphite oxide and thermally reduced graphite oxide , 2011 .

[24]  J. Echeberria,et al.  A comparison of the effects of multi-wall and single-wall carbon nanotube additions on the properties of zirconia toughened alumina composites , 2011 .

[25]  Jun Yan,et al.  Preparation of graphene nanosheet/alumina composites by spark plasma sintering , 2011 .

[26]  C. Zamani,et al.  Phase transformation studies on YSZ doped with alumina. Part 2: Yttria segregation , 2010 .

[27]  Chun’an Ma,et al.  Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium , 2010 .

[28]  M. Dresselhaus,et al.  Perspectives on carbon nanotubes and graphene Raman spectroscopy. , 2010, Nano letters.

[29]  T. Peijs,et al.  Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites , 2009 .

[30]  I. Santacruz,et al.  Slip casting of nanozirconia/MWCNT composites using a heterocoagulation process , 2009 .

[31]  N. Padture Multifunctional Composites of Ceramics and Single‐Walled Carbon Nanotubes , 2009 .

[32]  Lianjun Wang,et al.  Preparation and Consolidation of Alumina/Graphene Composite Powders , 2009 .

[33]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[34]  M. Traianidis,et al.  Colloidal processing, hot pressing and characterisation of electroconductive MWCNT-alumina composites with compositions near the percolation threshold , 2009 .

[35]  J. Kuebler,et al.  Zirconia/carbon nanofiber composite , 2008 .

[36]  J. Dentzer,et al.  A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes , 2006 .

[37]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[38]  K. Niihara,et al.  Preparation and Electrical Properties of Carbon Nanotubes Dispersed Zirconia Nanocomposites , 2006 .

[39]  T. Nishimura,et al.  Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics , 2006, Nanotechnology.

[40]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[41]  L. Bergström SHEAR THINNING AND SHEAR THICKENING OF CONCENTRATED CERAMIC SUSPENSIONS , 1998 .

[42]  Brian R. Lawn,et al.  A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I , 1981 .

[43]  Marta-Lena Antti,et al.  Coefficient of friction and wear resistance of zirconia–MWCNTs composites , 2015 .

[44]  K. Niihara,et al.  Failure investigation of carbon nanotube/3Y-TZP nanocomposites , 2005 .

[45]  A. Mukherjee,et al.  Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites , 2003, Nature materials.

[46]  D. Hasselman,et al.  Evaluation ofKIc of brittle solids by the indentation method with low crack-to-indent ratios , 1982 .