Mesopelagic zone ecology and biogeochemistry - a synthesis

The mesopelagic zone is the oceanic region through which carbon and other elements must pass in order to reach deeper waters or the sea floor. However, the food web interactions that occur in the mesopelagic zone are difficult to measure and so, despite their crucial importance to global elemental cycles, are not very well known. Recent developments in technology and new approaches have advanced the study of the variability in and controls upon the distribution and diversity of organisms in the mesopelagic zone, including the roles of respiration, recycling, and repackaging of particulate and dissolved organic material. However, there are remarkably few syntheses of the ecology and biogeochemistry of the microbes and metazoa that permanently reside or habitually visit this ‘twilight zone’. Without this synthesis, it is difficult to assess the impact of ongoing changes in ocean hydrography and chemistry, due to increasing atmospheric carbon dioxide levels, on the biological carbon pump. This paper reviews what is known about the distribution of microbes and metazoa in the mesopelagic zone in relation to their activity and impact on global biogeochemical cycles. Thus, gaps in our knowledge are identified and suggestions made for priority research programmes that will improve our ability to predict the effects of climate change on carbon sequestration.

[1]  Deborah K. Steinberg,et al.  Midwater zooplankton communities on pelagic detritus (giant larvacean houses) in Monterey Bay, California , 1994 .

[2]  Boris Worm,et al.  Services Impacts of Biodiversity Loss on Ocean Ecosystem , 2009 .

[3]  E. Sintes,et al.  Latitudinal trends of Crenarchaeota and Bacteria in the meso- and bathypelagic water masses of the Eastern North Atlantic. , 2007, Environmental microbiology.

[4]  J. Childress,et al.  Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. , 1998, The Journal of experimental biology.

[5]  J. Iriberri,et al.  Grazing rates of bacterivorous protists inhabiting diverse marine planktonic microenvironments , 2002 .

[6]  Bruce H. Robison,et al.  Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific , 2007, Proceedings of the National Academy of Sciences.

[7]  D. Sameoto Influence of the biological and physical environment on the vertical distribution of mesozooplankton and micronekton in the eastern tropical Pacific , 1986 .

[8]  Deborah K. Steinberg,et al.  Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone , 2008 .

[9]  B. H. Robison,et al.  Seasonal abundance and vertical distribution of mesopelagic calycophoran siphonophores in Monterey Bay, CA , 2000 .

[10]  C. Turley,et al.  Transformations of Biogenic Particles during Sedimentation in the Northeastern Atlantic , 1995 .

[11]  J. Gasol,et al.  Microbial oceanography of the dark ocean's pelagic realm , 2009 .

[12]  Christian Winter,et al.  Horizontal and vertical complexity of attached and free‐living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints , 2001 .

[13]  K. Wishner,et al.  Living in suboxia: Ecology of an Arabian Sea oxygen minimum zone copepod , 2000 .

[14]  L. Aluwihare,et al.  Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  C. Duarte,et al.  Respiration in the mesopelagic and bathypelagic zones of the oceans , 2005 .

[16]  George A. Jackson,et al.  Simulation of bacterial attraction and adhesion to falling particles in an aquatic environment , 1989 .

[17]  Peter Herring,et al.  The Biology of the deep ocean , 2002 .

[18]  H. Grossart,et al.  Mechanisms and Rates of Bacterial Colonization of Sinking Aggregates , 2002, Applied and Environmental Microbiology.

[19]  A. Lopez-Urrutia,et al.  Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. , 2007, Ecology.

[20]  S. Giovannoni,et al.  Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea , 2009, The ISME Journal.

[21]  R. Danovaro,et al.  Viral abundance and distribution in mesopelagic and bathypelagic waters of the Mediterranean Sea , 2007 .

[22]  Claudia E. Mills,et al.  Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? , 2001, Hydrobiologia.

[23]  R. Feely,et al.  Ocean acidification: the other CO2 problem. , 2009, Annual review of marine science.

[24]  Elizabeth B Kujawinski,et al.  Automated analysis of electrospray ionization fourier transform ion cyclotron resonance mass spectra of natural organic matter. , 2006, Analytical chemistry.

[25]  O. Ragueneau,et al.  Importance of particle formation to reconstructed water column biogenic silica fluxes , 2007 .

[26]  Carlos M. Duarte,et al.  Respiration in the open ocean , 2002, Nature.

[27]  David C. Smith,et al.  Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea , 1996 .

[28]  J. Ghiglione,et al.  Seasonal to hour variation scales in abundance and production of total and particle-attached bacteria in the open NW Mediterranean Sea (0–1000 m) , 2008 .

[29]  T. Reinthaler,et al.  Relationship between Bacterioplankton Richness, Respiration, and Production in the Southern North Sea , 2005, Applied and Environmental Microbiology.

[30]  E. Sintes,et al.  Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic , 2009 .

[31]  A. Yamaguchi,et al.  Latitudinal Differences in the Planktonic Biomass and Community Structure Down to the Greater Depths in the Western North Pacific , 2004 .

[32]  Martine Rodier,et al.  Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific , 1997 .

[33]  B. Ward,et al.  Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean , 2008 .

[34]  S. Giovannoni,et al.  16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Sprintall,et al.  Expanding Oxygen-Minimum Zones in the Tropical Oceans , 2008, Science.

[36]  E. Delong,et al.  High phylogenetic diversity in a marine-snow-associated bacterial assemblage , 1998 .

[37]  Riccardo Olcese,et al.  Potential Impacts of CO 2 Injection on Deep-Sea Biota , 2001 .

[38]  C. Schnitzler,et al.  Bioluminescent and Red-Fluorescent Lures in a Deep-Sea Siphonophore , 2005, Science.

[39]  T. Kiørboe Marine snow microbial communities: scaling of abundances with aggregate size , 2003 .

[40]  M J Weissburg,et al.  The fluid physics of signal perception by mate-tracking copepods. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  Dennis A. Hansell,et al.  Biogeochemistry of marine dissolved organic matter , 2002 .

[42]  F. Rassoulzadegan,et al.  Full-depth profile (0–2000 m) of bacteria, heterotrophic nanoflagellates and ciliates in the NW Mediterranean Sea: Vertical partitioning of microbial trophic structures , 2002 .

[43]  T. Hopkins,et al.  Proximate composition of Antarctic mesopelagic fishes , 1990 .

[44]  T. Fenchel Eppur si muove: many water column bacteria are motile , 2001 .

[45]  Andrew J. Watson,et al.  Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models , 2005 .

[46]  M. Heimann,et al.  Climate‐induced oceanic oxygen fluxes: Implications for the contemporary carbon budget , 2002 .

[47]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[48]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[49]  H. Fukuda,et al.  Size distribution and biomass of nanoflagellates in meso-and bathypelagic layers of the subarctic Pacific , 2007 .

[50]  C. Turley,et al.  Depth‐related cell‐specific bacterial leucine incorporation rates on particles and its biogeochemical significance in the Northwest Mediterranean , 2000 .

[51]  J. Arístegui,et al.  Zooplankton abundance in subtropical waters : is there a lunar cycle? , 2001 .

[52]  A. Longhurst,et al.  Vertical flux of respiratory carbon by oceanic diel migrant biota , 1990 .

[53]  S. Giovannoni,et al.  Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria , 1997, Applied and environmental microbiology.

[54]  D. Caron,et al.  Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). , 2007, Environmental microbiology.

[55]  Robert Karl. Johnson Fishes of the families Evermannellidae and Scopelarchidae : systmatics, morphology, interrelationships, and zoogeography , 1982 .

[56]  J. Childress,et al.  Patterns of growth, energy utilization and reproduction in some meso- and bathypelagic fishes off Southern California , 1980 .

[57]  M. Crassous,et al.  Nutrient and phytoplankton distribution in the Loire River plume (Bay of Biscay, France) resolved by a new Fine Scale Sampler , 2005 .

[58]  H. Ducklow,et al.  Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea , 1994, Nature.

[59]  Ba Biddanda,et al.  Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. II. Microbial metabolism , 1988 .

[60]  L. Cubillos,et al.  JUMBO SQUID ( DOSIDICUS GIGAS ) BIOMASS OFF CENTRAL CHILE: EFFECTS ON CHILEAN HAKE ( MERLUCCIUS GAY I) , 2008 .

[61]  S. Archer Adaptive Mechanisms in the Ecology of Vision , 1999, Springer Netherlands.

[62]  E. Delong,et al.  Phylogenetic diversity of aggregate‐attached vs. free‐living marine bacterial assemblages , 1993 .

[63]  B. Robison,et al.  Macropinna microstoma and the Paradox of Its Tubular Eyes , 2008, Copeia.

[64]  H. Grossart,et al.  Particle-associated flagellates: swimming patterns, colonization rates, and grazing on attached bacteria , 2004 .

[65]  M. Angel Vertical profiles of pelagic communities in the vicinity of the Azores Front and their implications to deep ocean ecology , 1989 .

[66]  R. Benner,et al.  Aldoses in various size fractions of marine organic matter: Implications for carbon cycling , 1997 .

[67]  M. Fasham,et al.  Dissolved organic matter in biogeochemical models of the Ocean , 1993 .

[68]  R. Koppelmann,et al.  Temporal changes of deep-sea mesozooplankton abundance in the temperate NE Atlantic and estimates of the carbon budget , 1999 .

[69]  Andrew S. Brierley,et al.  Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation , 2004 .

[70]  B. Bett,et al.  Mass deposition of jellyfish in the deep Arabian Sea , 2006 .

[71]  P. Lebaron,et al.  Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic , 2006 .

[72]  J. Gasol,et al.  Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean , 2007 .

[73]  S. F. Umani,et al.  An overview of Calanus helgolandicus ecology in European waters , 2005 .

[74]  D. Garrison,et al.  Mesopelagic microplankton of the Arabian Sea , 2003 .

[75]  G. Pierce,et al.  Lantern fish (Benthosema pterotum) resources as a target for commercial exploitation in the Oman Sea , 2007 .

[76]  H. Saito,et al.  Life histories of Neocalanus flemingeri and Neocalanus plumchrus (Calanoida: Copepoda) in the western subarctic Pacific , 1999 .

[77]  George A. Jackson,et al.  Effects of phytoplankton community on production, size, and export of large aggregates: A world‐ocean analysis , 2009 .

[78]  S. Fowler,et al.  Seasonal patterns and depth-specific trends of zooplankton fecal pellet fluxes in the Northwestern Mediterranean Sea , 1998 .

[79]  J. Dinasquet,et al.  Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic , 2009, Nature.

[80]  A. Burd,et al.  A model for the distribution of particle flux in the mid-water column controlled by subsurface biotic interactions , 2001 .

[81]  E. Barbier,et al.  Impacts of Biodiversity Loss on Ocean Ecosystem Services , 2006, Science.

[82]  Francisco P. Chavez,et al.  Seasonal abundance of the siphonophore, Nanomia bijuga, in Monterey Bay , 1998 .

[83]  T. Reinthaler,et al.  Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior , 2010 .

[84]  T. Fenchel Microbial Behavior in a Heterogeneous World , 2002, Science.

[85]  D. Kirchman,et al.  Pressure effects on surface Mediterranean prokaryotes and biogenic silica dissolution during a diatom sinking experiment , 2006 .

[86]  A. Yamaguchi,et al.  Community and trophic structures of pelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC) , 2002 .

[87]  B. Robison,et al.  New mesopelagic larvaceans in the genus Fritillaria from Monterey Bay, California , 2005, Journal of the Marine Biological Association of the United Kingdom.

[88]  B. Robison Herbivory by the myctophid fish Ceratoscopelus warmingii , 1984 .

[89]  T. Reinthaler,et al.  Prokaryotic respiration and production in the meso‐ and bathypelagic realm of the eastern and western North Atlantic basin , 2006 .

[90]  H. Dam,et al.  Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific , 1997 .

[91]  Deborah K. Steinberg,et al.  Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean , 2008 .

[92]  F. Rassoulzadegan,et al.  Vertical and seasonal variations of bacterial abundance and production in the mesopelagic layer of the NW Mediterranean Sea: bottom-up and top-down controls , 2004 .

[93]  H. Fukuda,et al.  Bacterioplankton distribution and production in deep Pacific waters: Large–scale geographic variations and possible coupling with sinking particle fluxes , 2000 .

[94]  I. Priede,et al.  Trophic position of deep-sea fish - assessment through fatty acid and stable isotope analyses , 2009 .

[95]  J. Hollibaugh,et al.  Similarity of particle-associated and free-living bacterial communities in northern San Francisco Bay, California , 2000 .

[96]  Dennis A. Hansell,et al.  Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea , 1999 .

[97]  T. Fenchel,et al.  Influence of bacteria, diffusion and shear on micro-scale nutrient patches, and implications for bacterial chemotaxis , 1999 .

[98]  N. B. Marshall Explorations in the life of fishes , 1965 .

[99]  L. Kann,et al.  Pelagic and benthic ecology of the lower interface of the Eastern Tropical Pacific oxygen minimum zone , 1995 .

[100]  L. Goodman,et al.  Evolution of the spatial structure of a thin phytoplankton layer into a turbulent field , 2009 .

[101]  T. R. Anderson,et al.  Carbon cycling and POC turnover in the mesopelagic zone of the ocean: Insights from a simple model , 2010 .

[102]  Pomeroy,et al.  Microbial aggregation and degradation of phytoplankton-derived detritus in seawater . I . Microbial succession , 2006 .

[103]  U. Passow,et al.  Factors influencing the sinking of POC and the efficiency of the biological carbon pump , 2007 .

[104]  M. Silver,et al.  Ciliated protozoa associated with oceanic sinking detritus , 1984, Nature.

[105]  B. Seibel,et al.  Potential Impacts of CO 2 Injection on Deep-Sea Biota , 2001 .

[106]  I. Salter,et al.  Radiolaria: Major exporters of organic carbon to the deep ocean , 2009 .

[107]  Jang-Cheon Cho,et al.  Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time‐series Study site , 2005 .

[108]  O. Ragueneau,et al.  Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump , 2006 .

[109]  H. Grossart,et al.  Bacterial Colonization of Particles: Growth and Interactions , 2003, Applied and Environmental Microbiology.

[110]  F. Lauro,et al.  The Unique 16S rRNA Genes of Piezophiles Reflect both Phylogeny and Adaptation , 2006, Applied and Environmental Microbiology.

[111]  Richard A. Snyder,et al.  Feeding behaviour and grazing impacts of a Euplotes sp. on attached bacteria , 1998 .

[112]  C. Pedrós-Alió,et al.  Diversity and Distribution of Marine Microbial Eukaryotes in the Arctic Ocean and Adjacent Seas , 2006, Applied and Environmental Microbiology.

[113]  Christopher D. Jones,et al.  The commercial harvest of krill in the southwest Atlantic before and during the CCAMLR 2000 survey , 2004 .

[114]  S. Giovannoni,et al.  Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans , 1996, Applied and environmental microbiology.

[115]  R. Rosenblatt,et al.  Review of the Deep-Sea Fish Family Platytroctidae (Pisces: Salmoniformes) , 1988 .

[116]  Richard A. Feely,et al.  Impacts of ocean acidification on marine fauna and ecosystem processes , 2008 .

[117]  T. Reinthaler,et al.  Regulation of aquatic microbial processes: the 'microbial loop' of the sunlit surface waters and the dark ocean dissected , 2008 .

[118]  Nicholas R. Bates,et al.  Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea , 2000 .

[119]  Farooq Azam,et al.  Major role of bacteria in biogeochemical fluxes in the ocean's interior , 1988, Nature.

[120]  J. Arístegui,et al.  Lunar cycle of zooplankton biomass in subtropical waters: biogeochemical implications , 2002 .

[121]  R. Benner,et al.  Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter , 2001 .

[122]  C. Lancelot,et al.  Major and comparable roles for free-living and attached bacteria in the degradation of Phaeocystis-derived organic matter in Belgian coastal waters of the North Sea , 1998 .

[123]  T. Reinthaler,et al.  Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean , 2005, Applied and Environmental Microbiology.

[124]  R. Amann,et al.  Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[125]  G. I. Matsumoto,et al.  Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.) , 2003 .

[126]  T. R. Anderson Progress in marine ecosystem modelling and the “unreasonable effectiveness of mathematics” , 2010 .

[127]  L. Stemmann,et al.  A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—Part I: model formulation , 2004 .

[128]  E. Sintes,et al.  Viral Abundance, Decay, and Diversity in the Meso- and Bathypelagic Waters of the North Atlantic , 2007, Applied and Environmental Microbiology.

[129]  Eric J Warrant,et al.  Vision in the deep sea , 2004, Biological reviews of the Cambridge Philosophical Society.

[130]  Xabier Irigoien,et al.  Scaling the metabolic balance of the oceans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[131]  P. Nival,et al.  Zooplankton Community During the Transition from Spring Bloom to Oligotrophy in the Open NW Mediterranean and Effects of Wind Events. 2. Vertical Distributions and Migrations , 2001 .

[132]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[133]  R. Burton,et al.  Seasonality and vertical structure of microbial communities in an ocean gyre , 2009, The ISME Journal.

[134]  J. Montoya,et al.  Export stoichiometry and migrant-mediated flux of phosphorus in the North Pacific Subtropical Gyre , 2009 .

[135]  O. Ragueneau,et al.  Evidence for reduced biogenic silica dissolution rates in diatom aggregates , 2007 .

[136]  M. Pujo-Pay,et al.  Diel and Seasonal Variations in Abundance, Activity, and Community Structure of Particle-Attached and Free-Living Bacteria in NW Mediterranean Sea , 2007, Microbial Ecology.

[137]  J. Jaffe,et al.  Microscale variability in the distributions of large fluorescent particles observed in situ with a planar laser imaging fluorometer , 2008 .

[138]  Jae S. Choi,et al.  Trophic Cascades in a Formerly Cod-Dominated Ecosystem , 2005, Science.

[139]  Deborah K. Steinberg,et al.  Revisiting Carbon Flux Through the Ocean's Twilight Zone , 2006, Science.

[140]  M. Waldrop,et al.  A molecular dawn for biogeochemistry. , 2006, Trends in ecology & evolution.

[141]  E. Delong,et al.  Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior , 2006, Science.

[142]  H. Fukuda,et al.  Basin-Scale Geographic Patterns of Bacterioplankton Biomass and Production in the Subarctic Pacific, July–September 1997 , 2001 .

[143]  B. Robison,et al.  Ecological substrate in midwater: Doliolula equus, a new mesopelagic tunicate , 2005, Journal of the Marine Biological Association of the United Kingdom.

[144]  A. Kalmijn,et al.  Electric and magnetic field detection in elasmobranch fishes. , 1982, Science.

[145]  P. White,et al.  The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats , 1991, Microbial Ecology.

[146]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[147]  Bruce W. Frost,et al.  Life histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus plumchrus, Neocalanus cristatus, and Eucalanus bungii in the Northeast Pacific , 1984 .

[148]  M. Tamburri,et al.  Chemically regulated feeding by a midwater medusa , 2000 .

[149]  H. Ducklow,et al.  Towards a better understanding of microbial carbon flux in the sea , 2008 .

[150]  V. Fabry Marine Calcifiers in a High-CO 2 Ocean , 2022 .

[151]  T. G. Bailey,et al.  Sinking rates and dissolution of midwater fish fecal matter , 1981 .

[152]  E. Delong,et al.  Genomic perspectives in microbial oceanography , 2005, Nature.

[153]  V. Christensen,et al.  Contribution of Fish to the Marine Inorganic Carbon Cycle , 2009, Science.

[154]  L. Goeyens,et al.  Particulate barium stocks and oxygen consumption in the Southern Ocean mesopelagic water column during spring and early summer: relationship with export production , 1997 .

[155]  M. Graco,et al.  Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone , 2007 .

[156]  M. Edwards,et al.  Impact of climate change on marine pelagic phenology and trophic mismatch , 2004, Nature.

[157]  S. Pearre Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences , 2003, Biological reviews of the Cambridge Philosophical Society.

[158]  W. Au,et al.  Nocturnal light and lunar cycle effects on diel migration of micronekton , 2009 .

[159]  E. Widder,et al.  Effects of a decrease in downwelling irradiance on the daytime vertical distribution patterns of zooplankton and micronekton , 2002 .

[160]  G. Gorsky,et al.  Global zoogeography of fragile macrozooplankton in the upper 100–1000 m inferred from the underwater video profiler , 2008 .

[161]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[162]  I. Koike,et al.  Production of Refractory Dissolved Organic Matter by Bacteria , 2001, Science.

[163]  Dennis A. Hansell,et al.  Temporal dynamics of dissolved combined neutral sugars and the quality of dissolved organic matter in the Northwestern Sargasso Sea , 2009 .

[164]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[165]  Dennis A. Hansell,et al.  Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @#! is wrong with present calculations of carbon budgets? , 2010 .

[166]  Rainer Knust,et al.  Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance , 2007, Science.

[167]  F. Azam,et al.  Microbial structuring of marine ecosystems , 2007, Nature Reviews Microbiology.

[168]  C. Pilskaln,et al.  Giant aggregates: Importance as microbial centers and agents of material flux in the mesopelagic zone , 1998 .

[169]  G. Gorsky,et al.  A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—Part II: application to a three year survey in the NW Mediterranean Sea , 2004 .

[170]  A. Yamaguchi,et al.  Respiration in marine pelagic copepods: a global-bathymetric model , 2007 .

[171]  Rachel M. Jeffreys,et al.  Deep-Sea Research II , 2008 .

[172]  Bruce H. Robison,et al.  Deep pelagic biology , 2004 .

[173]  Bruce H. Robison,et al.  The bathypelagic community of Monterey Canyon , 2010 .

[174]  S. Jacquet,et al.  Mesopelagic organic carbon remineralization in the Kerguelen Plateau region tracked by biogenic particulate Ba , 2008 .

[175]  T. Kiørboe,et al.  Motility patterns and mate encounter rates in planktonic copepods , 2005 .

[176]  R. Böttger-Schnack,et al.  Aspects of horizontal distribution and diet of myctophid fish in the Arabian Sea with reference to the deep water oxygen deficiency , 1993 .

[177]  C. Pedrós-Alió,et al.  Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton , 2001, Nature.

[178]  Jeffrey C Drazen,et al.  The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[179]  G. Hays,et al.  Climate change and marine plankton. , 2005, Trends in ecology & evolution.

[180]  D. Pauly,et al.  Fishing down marine food webs , 1998, Science.

[181]  S. Wakeham,et al.  Composition and flux of particulate amino acids and chloropigments in equatorial Pacific seawater and sediments , 2000 .

[182]  H. Ducklow,et al.  Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations , 1995 .

[183]  Andreas Oschlies,et al.  Global Patterns of Predator Diversity in the Open Oceans , 2005, Science.

[184]  K. Wishner,et al.  Mesozooplankton biomass in the upper 1000 m in the Arabian Sea: overall seasonal and geographic patterns, and relationship to oxygen gradients , 1998 .

[185]  C. Pilskaln,et al.  Role of mesopelagic zooplankton in the community metabolism of giant larvacean house detritus in Monterey Bay, California, USA , 1997 .

[186]  A. Tsuda,et al.  Functional roles of interzonal migrating mesozooplankton in the western subarctic Pacific , 2003 .

[187]  K. Wishner,et al.  Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone , 2008 .

[188]  Deborah K. Steinberg,et al.  A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean , 2008 .

[189]  F. Azam,et al.  Oceanography: Sea snow microcosms , 2001, Nature.

[190]  Whitlow W. L. Au,et al.  Extreme diel horizontal migrations by a tropical nearshore resident micronekton community , 2006 .

[191]  David C. Smith,et al.  Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution , 1992, Nature.

[192]  R. Koppelmann,et al.  Distribution patterns of mesopelagic fishes with special reference to Vinciguerria lucetia Garman 1899 (Phosichthyidae: Pisces) in the Humboldt Current Region off Peru , 2006 .

[193]  C. Tamburini,et al.  Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets , 2009 .

[194]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[195]  P. Williams,et al.  Respiration in aquatic ecosystems. , 2005 .

[196]  M. Weinbauer,et al.  Lysogeny and virus‐induced mortality of bacterioplankton in surface, deep, and anoxic marine waters , 2003 .

[197]  M. Landry,et al.  Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton , 2001 .

[198]  G. Evans,et al.  Towards a model of ocean biogeochemical processes , 1993 .

[199]  Deborah K. Steinberg,et al.  Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean , 2008 .

[200]  George A. Jackson,et al.  Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria , 2001 .

[201]  Bruce H Robison,et al.  Conservation of Deep Pelagic Biodiversity , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[202]  B. Robison,et al.  Giant Larvacean Houses: Rapid Carbon Transport to the Deep Sea Floor , 2005, Science.

[203]  S. Iverson,et al.  Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis , 2008, Oecologia.

[204]  D. Caron Grazing of attached bacteria by heterotrophic microflagellates , 1987, Microbial Ecology.