Mixed-radix, virtually scaling-free CORDIC algorithm based rotator for DSP applications

[1]  Swapna Banerjee,et al.  Virtually Scaling-Free Adaptive CORDIC Rotator , 2004 .

[2]  Jesús Grajal,et al.  Accurate Rotations Based on Coefficient Scaling , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Antonio Torralba,et al.  Design of an efficient CORDIC-based architecture for synchronization in OFDM , 2006, IEEE Transactions on Consumer Electronics.

[4]  Javier D. Bruguera,et al.  High Performance Rotation Architectures Based on the Radix-4 CORDIC Algorithm , 1997, IEEE Trans. Computers.

[5]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[6]  Supriya Aggarwal,et al.  Area-Time Efficient Scaling-Free CORDIC Using Generalized Micro-Rotation Selection , 2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[7]  Pramod Kumar Meher,et al.  Low Latency Scaling-Free Pipeline CORDIC Architecture Using Augmented Taylor Series , 2019, 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS).

[8]  Mazad Zaveri,et al.  FPGA implementation of high-performance, resource-efficient Radix-16 CORDIC rotator based FFT algorithm , 2020, Integr..

[9]  Jong-Myon Kim,et al.  A high-performance, resource-efficient, reconfigurable parallel-pipelined FFT processor for FPGA platforms , 2018, Microprocess. Microsystems.

[10]  M. Despotovic,et al.  Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation , 2016 .

[11]  Oscar Gustafsson,et al.  SFF—The Single-Stream FPGA-Optimized Feedforward FFT Hardware Architecture , 2018, Journal of Signal Processing Systems.

[12]  Bharat Garg,et al.  RICO: A low power repetitive iteration CORDIC for DSP applications in portable devices , 2016, J. Syst. Archit..

[13]  S. Banerjee,et al.  Unified CORDIC-based chip to realise DFT/DHT/DCT/DST , 2002 .

[14]  Liyi Xiao,et al.  CORDIC Based Fast Radix-2 DCT Algorithm , 2013, IEEE Signal Processing Letters.

[15]  J. S. Walther,et al.  A unified algorithm for elementary functions , 1899, AFIPS '71 (Spring).

[16]  Kailash Chandra Ray,et al.  Low Latency Hybrid CORDIC Algorithm , 2014, IEEE Transactions on Computers.

[17]  Javier Hormigo,et al.  Enhanced Scaling-Free CORDIC , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Jack E. Volder The Birth of Cordic , 2000, J. VLSI Signal Process..

[19]  Milos D. Ercegovac,et al.  Digit-recurrence algorithms for division and square root with limited precision primitives , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[20]  Javier Valls-Coquillat,et al.  FPGA implementation of a 10 GS/s variable-length FFT for OFDM-based optical communication systems , 2019, Microprocess. Microsystems.

[21]  Yu Hen Hu,et al.  The quantization effects of the CORDIC algorithm , 1992, IEEE Trans. Signal Process..

[22]  Dirk Timmermann,et al.  A programmable CORDIC chip for digital signal processing applications , 1991 .

[23]  A. Y. Kwentus,et al.  A 100-MHz, 16-b, direct digital frequency synthesizer with a 100-dBc spurious-free dynamic range , 1999, IEEE J. Solid State Circuits.

[24]  Kavita Khare,et al.  Scale-Free Hyperbolic CORDIC Processor and Its Application to Waveform Generation , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Javier D. Bruguera,et al.  Radix-4 vectoring CORDIC algorithm and architectures , 1996, Proceedings of International Conference on Application Specific Systems, Architectures and Processors: ASAP '96.

[26]  Mazad Zaveri,et al.  ASIC Implementation of High Performance Radix-8 CORDIC Algorithm , 2018, 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[27]  Mazad Zaveri,et al.  FPGA Implementation of Asynchronous Mousetrap Pipelined Radix-2 CORDIC Algorithm , 2018, 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT).

[28]  Bedrich J. Hosticka,et al.  Inverse kinematics computations with modified CORDIC iterations , 1996 .

[29]  Liyi Xiao,et al.  CORDIC-Based Unified Architectures for Computation of DCT/IDCT/DST/IDST , 2014, Circuits Syst. Signal Process..

[30]  Pramod Kumar Meher,et al.  Reconfigurable CORDIC architectures for multi-mode and multi-trajectory operations , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[31]  F. Cardells-Tormo,et al.  Optimisation of direct digital frequency synthesisers based on CORDIC , 2001 .

[32]  Oscar Gustafsson,et al.  Low-Complexity Multiplierless Constant Rotators Based on Combined Coefficient Selection and Shift-and-Add Implementation (CCSSI) , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[33]  Swapna Banerjee,et al.  Modified virtually scaling-free adaptive CORDIC rotator algorithm and architecture , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[34]  Kavita Khare,et al.  Concept, Design, and Implementation of Reconfigurable CORDIC , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[35]  Jesús Grajal,et al.  Efficient Memoryless Cordic for FFT Computation , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[36]  Martin Kumm,et al.  CORDIC II: A New Improved CORDIC Algorithm , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[37]  K. Sridharan,et al.  50 Years of CORDIC: Algorithms, Architectures, and Applications , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..