A meso-mechanical model for concrete under dynamic tensile and compressive loading

We present a computational model, which combines interface debonding and frictional contact, in order to investigate the response of concrete specimens subjected to dynamic tensile and compressive loading. Concrete is modeled using a meso-mechanical approach in which aggregates and mortar are represented explicitly, thus allowing all material parameters to be physically identified. The material phases are considered to behave elastically, while initiation, coalescence and propagation of cracks are modeled by dynamically inserted cohesive elements. The impenetrability condition is enforced by a contact algorithm that resorts to the classical law of Coulomb friction. We show that the proposed model is able to capture the general increase in strength with increasing rate of loading and the tension/compression asymmetry. Moreover, we simulate compression with lateral confinement showing that the model reproduces the increase in peak strength with increasing confinement level. We also quantify the increase in the ratio between dissipated frictional energy and dissipated fracture energy as the confining pressure is augmented. Our results demonstrate the fundamental importance of capturing frictional mechanisms, which appear to dissipate a similar amount of energy when compared to cracking under compressive loading.

[1]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[2]  J. Molinari,et al.  Micromechanical finite element modeling of compressive fracture in confined alumina ceramic , 2006 .

[3]  Demetrios M. Cotsovos,et al.  Numerical investigation of concrete subjected to compressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high loading rates , 2008 .

[4]  Antonio Aguado,et al.  MICROSTRUCTURAL ANALYSIS OF CONCRETE FRACTURE USING INTERFACE ELEMENTS , 2000 .

[5]  R. A. Vonk,et al.  Softening of concrete loaded in compression , 1992 .

[6]  Ludovic Noels,et al.  An explicit discontinuous Galerkin method for non‐linear solid dynamics: Formulation, parallel implementation and scalability properties , 2008 .

[7]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[8]  Sujeeva Setunge,et al.  Complete Triaxial Stress-Strain Curves of High-Strength Concrete , 2001 .

[9]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[10]  F. E. Richart,et al.  Failure of plain and spirally reinforced concrete in compression , 1929 .

[11]  P. E. Roelfstra,et al.  Le béton numérique , 1985 .

[12]  J. Mier,et al.  Effect of particle structure on mode I fracture process in concrete , 2003 .

[13]  Niels Saabye Ottosen,et al.  Constitutive Model for Short-Time Loading of Concrete , 1979 .

[14]  François Toutlemonde,et al.  VISCOUS HARDENING PLASTICITY FOR CONCRETE IN HIGH-RATE DYNAMICS , 1998 .

[15]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[16]  P. Rossi,et al.  The dynamic behaviour of concrete: influence of free water , 1992 .

[17]  I. Carol,et al.  Micromechanical analysis of quasi‐brittle materials using fracture‐based interface elements , 2001 .

[18]  J. Molinari,et al.  In fl uence of the meso-structure in dynamic fracture simulation of concrete under tensile loading , 2011 .

[19]  J. Bolander,et al.  Fracture analyses using spring networks with random geometry , 1998 .

[20]  L. B. Freund,et al.  Modeling and Simulation of Dynamic Fragmentation in Brittle Materials , 1999 .

[21]  Pascal Forquin,et al.  An Experimental Method to Determine the Tensile Strength of Concrete at High Rates of Strain , 2010 .

[22]  P. Grassl,et al.  A damage-plasticity interface approach to the meso-scale modelling of concrete subjected to cyclic compressive loading , 2008 .

[23]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[24]  J. Mier,et al.  Simple lattice model for numerical simulation of fracture of concrete materials and structures , 1992 .

[25]  L. J. Sluys,et al.  An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model , 2008 .

[26]  J. Molinari,et al.  A cohesive element model for mixed mode loading with frictional contact capability , 2013 .

[27]  Victor E. Saouma,et al.  Mixed mode fracture of cementitious bimaterial interfaces; Part I: Experimental results , 1998 .

[28]  Jaap Weerheijm,et al.  Research developments and experimental data on dynamic concrete behaviour , 2007 .

[29]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[30]  S. H. Perry,et al.  Compressive behaviour of concrete at high strain rates , 1991 .

[31]  Sanford E. Thompson,et al.  THE LAWS OF PROPORTIONING CONCRETE , 1907 .

[32]  Stephen A. Vavasis,et al.  Obtaining initially rigid cohesive finite element models that are temporally convergent , 2005 .

[33]  Jacky Mazars,et al.  Predicting concrete behaviour from quasi-static loading to hypervelocity impact , 2010 .

[34]  Ferhun C. Caner,et al.  Fracturing Rate Effect and Creep in Microplane Model for Dynamics , 2000 .

[35]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[36]  Gilles Pijaudier-Cabot,et al.  Coupled damage and plasticity modelling in transient dynamic analysis of concrete , 2002 .

[37]  Michael Ortiz,et al.  Three‐dimensional finite‐element simulation of the dynamic Brazilian tests on concrete cylinders , 2000 .

[38]  C. Mariotti,et al.  Numerical study of rock and concrete behaviour by discrete element modelling , 2000 .

[39]  G. Cusatis Strain-rate effects on concrete behavior , 2011 .

[40]  I. Carol,et al.  Study of the Behavior of Concrete under Triaxial Compression , 2002 .

[41]  Omar Chaallal,et al.  BEHAVIOUR OF HIGH-STRENGTH CONCRETE UNDER CONFINED STRESSES , 1992 .

[42]  R. Desmorat,et al.  Nonstandard Thermodynamics Framework for Robust Computations with Induced Anisotropic Damage , 2010 .

[43]  Matthew West,et al.  Decomposition contact response (DCR) for explicit finite element dynamics , 2005, International Journal for Numerical Methods in Engineering.

[44]  Jean-François Dubé,et al.  Rate Dependent Damage Model for Concrete in Dynamics , 1996 .

[45]  Jacek Tejchman,et al.  Effect of aggregate structure on fracture process in concrete using 2D lattice model , 2007 .

[46]  J. Molinari,et al.  Numerical determination of the tensile response and the dissipated fracture energy of concrete: role of the mesostructure and influence of the loading rate , 2013 .

[47]  J. Molinari,et al.  Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading , 2011 .

[48]  M. J. N. Priestley,et al.  Long term observations of concrete structures analysis of temperature gradient effects , 1985 .

[49]  M. Elices,et al.  Fracture of model concrete: 2. Fracture energy and characteristic length , 2006 .

[50]  R. Desmorat,et al.  Anisotropic 3D delay-damage model to simulate concrete structures , 2008 .

[51]  K. T. Ramesh,et al.  Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties , 2008 .

[52]  Laurent Daudeville,et al.  Numerical Study of Compressive Behavior of Concrete at High Strain Rates , 1999 .

[53]  J. Červenka,et al.  Mixed mode fracture of cementitious bimaterial interfaces: ; Part II: numerical simulation , 1998 .

[54]  Demetrios M. Cotsovos,et al.  Numerical investigation of concrete subjected to compressive impact loading. Part 2: Parametric investigation of factors affecting behaviour at high loading rates , 2008 .

[55]  Sia Nemat-Nasser,et al.  Compression‐induced microcrack growth in brittle solids: Axial splitting and shear failure , 1985 .

[56]  R. Desmorat,et al.  Delay-active damage versus non-local enhancement for anisotropic damage dynamics computations with alternated loading , 2010 .

[57]  M. Jirásek,et al.  Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension , 2009, 0901.4636.

[58]  Aurelio Muttoni,et al.  Relationship between Nonlinear Creep and Cracking of Concrete under Uniaxial Compression , 2007 .

[59]  Ignacio Carol,et al.  3D meso-structural analysis of concrete specimens under uniaxial tension , 2006 .