The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations

Atomistic simulations such as molecular dynamics and Monte Carlo are widely used for understanding the material behavior at a more fundamental level, e.g., at the atomic level. However, there still exist limitations in the variety of material systems, specimen size and simulation time. This article briefly outlines the formalism and performance of the second nearest-neighbor modified embedded-atom method, an interatomic potential formalism applicable to a wide range of materials systems. Recent progresses made to overcome the inherent size and time limitations of atomistic simulations are also introduced along with the challenges still remaining in extending their applicability. Finally, the authors release all the potential parameter sets for elements and alloy systems, and relevant homemade atomistic simulation codes based on the interatomic potential formalism with a user guide.

[1]  Parrinello,et al.  Au(100) surface reconstruction. , 1986, Physical review letters.

[2]  Peter M. Derlet,et al.  A ‘magnetic’ interatomic potential for molecular dynamics simulations , 2005 .

[3]  Young Min Kim,et al.  Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system , 2009 .

[4]  Byeong-Joo Lee,et al.  Modified embedded-atom method interatomic potentials for the Fe-Nb and Fe-Ti binary systems , 2008 .

[5]  Byeong-Joo Lee A Semi-Empirical Atomistic Approach in Materials Research , 2009 .

[6]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[7]  J. Shim,et al.  Modified embedded-atom method calculation for the Ni–W system , 2003 .

[8]  A modified embedded atom method interatomic potential for the Cu–Ni system , 2004 .

[9]  B. E. Sundquist A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron , 1964 .

[10]  M. Baskes,et al.  Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method , 2003 .

[11]  Byeong-Joo Lee,et al.  Atomistic modeling of the Cu-Zr-Ag bulk metallic glass system , 2009 .

[12]  Byeong-Joo Lee,et al.  Computation of grain boundary energies , 2004 .

[13]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[14]  Xuejun Xu,et al.  Embedded-atom-method functions for the body-centered-cubic iron and hydrogen , 2001 .

[15]  L. P. Kubin,et al.  The modelling of dislocation patterns , 1992 .

[16]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded atom method potentials for bcc transition metals , 2001 .

[17]  Michael I. Baskes,et al.  Determination of modified embedded atom method parameters for nickel , 1997 .

[18]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[19]  Byeong-Joo Lee,et al.  Modified embedded-atom method interatomic potential for the Fe–Al system , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[21]  H. Berns,et al.  High nitrogen steels : structure, properties, manufacture, applications , 1999 .

[22]  Feng-jiu Sun,et al.  A modified embedded atom method interatomic potential for the Ti―N system , 2009 .

[23]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[24]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[25]  T. Gómez-Acebo,et al.  Applications of computational thermodynamics - the extension from phase equilibrium to phase transformations and other properties , 2007 .

[26]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[27]  Byeong-Joo Lee,et al.  Atomistic modeling of III–V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1−xInxN , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  W. Jung,et al.  Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems , 2010 .

[29]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded-atom-method potential , 2000 .

[30]  B. Wirth,et al.  Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys , 2005 .

[31]  Michael I. Baskes,et al.  Modified embedded-atom method interatomic potentials for Ti and Zr , 2006 .

[32]  J. Shim,et al.  A semi-empirical atomic potential for the Fe-Cr binary system , 2001 .

[33]  Tae-Ho Lee,et al.  A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system , 2006 .

[34]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[35]  W. Jung,et al.  Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems , 2008 .

[36]  P. Erhart,et al.  Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials , 2007 .

[37]  Nack J. Kim,et al.  Atomistic Modeling of pure Mg and Mg―Al systems , 2009 .

[38]  M. Baskes Atomistic Potentials for the Molybdenum-Silicon System , 1998 .

[39]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[40]  Young-Han Shin,et al.  A modified embedded-atom method interatomic potential for Germanium , 2008 .

[41]  B. Legrand,et al.  Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model , 1989 .

[42]  Susan B. Sinnott,et al.  Charge optimized many-body potential for the Si/SiO2 system , 2007 .

[43]  Byeong-Joo Lee,et al.  Modified embedded-atom method interatomic potential for the Fe–Pt alloy system , 2006 .

[44]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[45]  N. A. Deskins,et al.  A Shell Model for Atomistic Simulation of Charge Transfer in Titania , 2008 .

[46]  Hyuk-Joong Lee,et al.  An identification scheme of grain boundaries and construction of a grain boundary energy database , 2011 .

[47]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[48]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[49]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[50]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[51]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[52]  Byeong-Joo Lee,et al.  A modified embedded-atom method interatomic potential for the Cu–Zr system , 2004 .

[53]  Byeong-Joo Lee,et al.  A modified embedded-atom method interatomic potential for the Fe–H system , 2006 .

[54]  Byeong-Joo Lee,et al.  A semi-empirical interatomic potential for the Cu-Ti binary system , 2007 .

[55]  Michael I. Baskes,et al.  Modified embedded atom potentials for HCP metals , 1994 .