Water on surface studied by scanning probe microscopies

La manera com es mulla una superficie quan se l'exposa a l'aigua determina fenomens crucials en biologia, en quimica i en ciencia de materials. Les microscopies locals de rastreig han obert recentment nous camins per a estudiar capes i gotes d'aigua sobre superficies que han permes l'estudi de les propietats d'allo mullat a nivell molecular. S'han desenvolupat diverses vies d'aproximacio utilitzant aquestes tecniques que proporcionen diferents informacions sobre el fenomen del que es mullat. Per exemple, la microscopia de rastreig d'efecte tunel s'utilitza per estudiar l'estructura de petits clusters i monocapes de molecules d'aigua absorbides en superficies. Malauradament, aquests estudis estan limitats a temperatures criogeniques i per substrats conductors. Per investigar fenomens relacionats amb allo mullat en condicions ambientals, el microscopi de forces atomiques en modes electrostatics de no-contacte ha esdevingut una eina molt poderosa. Mitjancant aquesta tecnica s'estudia l'estructura de les capes d'aigua mes enlla de la primera monocapa, es poden obtenir imatges de gotes a escala nanometrica per investigar la hidrofobicitat i la hidrofilicitat a escala molecular, s'investiguen processos quimics dins de capes d'aigua o s'intenta millorar la impermeabilitat de recobriments moleculars utilitzats en nanotecnologia. En aquest article es presenta una seleccio d'estudis il·lustratius, realitzats mitjancant microscopies locals de rastreig, sobre diferents aspectes rellevants en ciencia i tecnologia relacionats amb l'aigua i les superficies.

[1]  P. Cabrera-Sanfelix Decisive role of the energetics of dissociation products in the adsorption of water on O/Ru(0001) , 2008 .

[2]  M. Tatarkhanov,et al.  The structure of mixed H2O-OH monolayer films on Ru(0001). , 2008, The Journal of chemical physics.

[3]  Miquel Salmeron,et al.  Growth and structure of water on SiO2 films on Si Investigated by Kelvin probe microscopy and in Situ X-ray spectroscopies. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[4]  A. Michaelides,et al.  Ice nanoclusters at hydrophobic metal surfaces. , 2007, Nature materials.

[5]  A. Arnau,et al.  Spontaneous Emergence of Cl- Anions from NaCl(100) at Low Relative Humidity , 2007 .

[6]  M. Salmeron,et al.  Molecular structure of water at interfaces: wetting at the nanometer scale. , 2006, Chemical reviews.

[7]  Peter Feulner,et al.  Stability of water monolayers on Ru(0001) : Thermal and electronically induced dissociation , 2005 .

[8]  M. J. Gladys,et al.  Water adsorption on O-covered Ru {0001}: Coverage-dependent change from dissociation to molecular adsorption , 2005 .

[9]  D. F. Ogletree,et al.  Initial stages of water adsorption on NaCl (100) studied by scanning polarization force microscopy. , 2005, The Journal of chemical physics.

[10]  F. Sanz,et al.  Water nanodroplets confined in molecular nanobeakers , 2005 .

[11]  M. Salmeron,et al.  In situ study of water-induced segregation of bromide in bromide-doped sodium chloride by scanning polarization force microscopy. , 2005, The journal of physical chemistry. A.

[12]  G. Ewing Thin Film Water , 2004 .

[13]  A Michaelides,et al.  Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. , 2004, Physical review letters.

[14]  Kwang S. Kim,et al.  Atomic structure and energetics of adsorbed water on the NaCl(001) surface , 2004 .

[15]  R. Maboudian,et al.  Surface chemistry and tribology of MEMS. , 2004, Annual review of physical chemistry.

[16]  D. F. Ogletree,et al.  Interaction of water with self-assembled monolayers of alkylsilanes on mica. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  B. Finlayson‐Pitts The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr. , 2003, Chemical reviews.

[18]  L. Qian,et al.  Tribological Properties of Self-Assembled Monolayers and Their Substrates Under Various Humid Environments , 2003 .

[19]  A. Michaelides,et al.  General model for water monomer adsorption on close-packed transition and noble metal surfaces. , 2003, Physical review letters.

[20]  A. Michaelides,et al.  Different surface chemistries of water on Ru[0001]: from monomer adsorption to partially dissociated bilayers. , 2003, Journal of the American Chemical Society.

[21]  W. Ho Single-molecule chemistry , 2002 .

[22]  T. Mitsui,et al.  Water Diffusion and Clustering on Pd(111) , 2002, Science.

[23]  Michael A. Henderson,et al.  The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited , 2002 .

[24]  K. Rieder,et al.  Formation of the cyclic ice hexamer via excitation of vibrational molecular modes by the scanning tunneling microscope , 2002 .

[25]  J. Nieminen,et al.  Intermolecular bond length of ice on Ag(111). , 2002, Physical review letters.

[26]  P. Feibelman Partial Dissociation of Water on Ru(0001) , 2002, Science.

[27]  M. Salmeron,et al.  Formation of dipole-oriented water films on mica substrates at ambient conditions , 2000 .

[28]  J. Daillant,et al.  Reduction in the surface energy of liquid interfaces at short length scales , 2000, Nature.

[29]  S. Bardon,et al.  Organization of cyanobiphenyl liquid crystal molecules in prewetting films spreading on silicon wafers. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  M. Salmeron,et al.  Adsorption of Water on Alkali Halide Surfaces Studied by Scanning Polarization Force Microscopy , 1998 .

[31]  M. Salmeron,et al.  High-Resolution Imaging of Liquid Structures: Wetting and Capillary Phenomena at the Nanometer Scale , 1997 .

[32]  M. Parrinello,et al.  Two Dimensional Ice Adsorbed on Mica Surface , 1997 .

[33]  M. Salmeron,et al.  Imaging and manipulation of nanometer-size liquid droplets by scanning polarization force microscopy , 1996 .

[34]  Xudong Xiao,et al.  Scanning polarization force microscopy: A technique for imaging liquids and weakly adsorbed layers , 1995 .

[35]  M. Salmeron,et al.  Imaging the Condensation and Evaporation of Molecularly Thin Films of Water with Nanometer Resolution , 1995, Science.

[36]  G. Held,et al.  The structure of the p(√3 × √3)R30° bilayer of D2O on Ru(001) , 1994 .

[37]  T. Ichinokawa,et al.  Liquid drop model of a small particle in a liquid state , 1984 .

[38]  J. Israelachvili,et al.  Measurement of forces between two mica surfaces in aqueous poly(ethylene oxide) solutions , 1979, Nature.