Assertion level proof planning with compiled strategies

The objective of this thesis is to ease the formalization of proofs by being able to verify as well as to automatically construct abstract human-style proofs. This is achieved by lifting the logical basis to the abstract assertion level, which has been identified as a style of reasoning that can be found in textbooks. A case study shows that automatic reasoning procedures benefit from the abstract assertion level reasoning. In addition, a strategy language is developed that allows the specification of abstract underspecified declarative proof patterns within the proof document and supports their refinement. Case studies show that complex reasoning patterns can concisely be specified within the developed language. Together, the complementary methods provide a framework to automate declarative proofs at the assertion level.

[1]  Neil T. Heffernan,et al.  An Intelligent Tutoring System Incorporating a Model of an Experienced Human Tutor , 2002, Intelligent Tutoring Systems.

[2]  Jörg H. Siekmann,et al.  e-Learning Logic and Mathematics: What We Have and What We Need , 2005, We Will Show Them!.

[3]  Lawrence C. Paulson,et al.  A Generic Tableau Prover and its Integration with Isabelle , 1999, J. Univers. Comput. Sci..

[4]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[5]  William M. Farmer,et al.  IMPS: System Description , 1992, CADE.

[6]  Alasdair Urquhart,et al.  The Complexity of Propositional Proofs , 1995, Bulletin of Symbolic Logic.

[7]  Lillian Lee Scribes,et al.  Latent Semantic Indexing , 2007 .

[8]  Alan Bundy,et al.  A Science of Reasoning , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[9]  Marc Wagner,et al.  A change-oriented architecture for mathematical authoring assistance , 2011, Dissertations in Artificial Intelligence.

[10]  Jörg H. Siekmann,et al.  Computer supported mathematics with Omegamega , 2006, J. Appl. Log..

[11]  R. Nigel Horspool,et al.  Directly-Executable Earley Parsing , 2001, CC.

[12]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[13]  Manfred Kerber,et al.  Proof Planning: A Practical Approach to Mechanized Reasoning in Mathematics , 1998 .

[14]  Frank Pfenning,et al.  The TPS Theorem Proving System , 1986, CADE.

[15]  Volker Sorge,et al.  Connecting Logical Representations and Efficient Computations , 2005, Calculemus.

[16]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[17]  Jörg H. Siekmann,et al.  Unification theory , 1986, Decis. Support Syst..

[18]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[19]  Christoph Goller,et al.  Controlled integration of the cut rule into connection tableau calculi , 2004, Journal of Automated Reasoning.

[20]  Xiaorong Huang The Presentation of Proofs at the Assertion Level , 1999 .

[21]  Ian Green,et al.  System Description: Proof Planning in Higher-Order Logic with Lambda-Clam , 1998, CADE.

[22]  Christoph Benzmüller,et al.  Integrating Proof Assistants as Reasoning and Verification Tools into a Scientific WYSIWIG Editor , 2005 .

[23]  J. Siekmann,et al.  Computer supported mathematics with MEGA , 2005 .

[24]  Myla Archer,et al.  Human-Style Theorem Proving Using PVS , 1997, TPHOLs.

[25]  Julien Charles,et al.  A Lightweight Theorem Prover Interface for Eclipse , 2008 .

[26]  Albert Gräf,et al.  Left-to-Right Tree Pattern Matching , 1991, RTA.

[27]  Bernhard Beckert,et al.  Semantic Tableaux with Equality , 1997, J. Log. Comput..

[28]  Harald Ganzinger,et al.  Superposition with equivalence reasoning and delayed clause normal form transformation , 2005, Inf. Comput..

[29]  Jean-Christophe Filliâtre,et al.  Backtracking iterators , 2006, ML '06.

[30]  Norbert Eisinger,et al.  A Confluent Connection Calculus , 2000, Intellectics and Computational Logic.

[31]  Francis Jeffry Pelletier Automated Natural Deduction in Thinker , 1998, Stud Logica.

[32]  Harrie de Swart,et al.  Automated Reasoning with Analytic Tableaux and Related Methods , 2000, Lecture Notes in Computer Science.

[33]  Frank van Harmelen,et al.  Experiments with proof plans for induction , 2004, Journal of Automated Reasoning.

[34]  Hantao Zhang,et al.  SEM: a System for Enumerating Models , 1995, IJCAI.

[35]  Martin D. Davis,et al.  Obvious Logical Inferences , 1981, IJCAI.

[36]  Jacques Herbrand Recherches sur la théorie de la démonstration , 1930 .

[37]  Cezary Kaliszyk,et al.  Teaching logic using a state-of-the-art proof assistant , 2007 .

[38]  Peter Baumgartner,et al.  Hyper Tableaux , 1996, JELIA.

[39]  Erica Melis,et al.  Failure Reasoning in Multiple-Strategy Proof Planning , 2005, STRATEGIES@IJCAR.

[40]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[41]  Volker Sorge,et al.  PDS — A Three-Dimensional Data Structure for Proof Plans , 2007 .

[42]  Jacques D. Fleuriot,et al.  Proof planning Non-standard Analysis , 2002, ISAIM.

[43]  Josef Urban,et al.  Momm - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics , 2006, Int. J. Artif. Intell. Tools.

[44]  Alan F. McMichael Mechanization of Analytic Reasoning About Sets , 1991, AAAI.

[45]  David Delahaye,et al.  A Proof Dedicated Meta-Language , 2002, LFM.

[46]  Serge Autexier,et al.  Synthesizing Proof Planning Methods and Omega-Ants Agents from Mathematical Knowledge , 2006, MKM.

[47]  Alan Bundy,et al.  Rippling - meta-level guidance for mathematical reasoning , 2005, Cambridge tracts in theoretical computer science.

[48]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[49]  Leslie Lamport,et al.  How to Write a Proof , 1995 .

[50]  Alexander A. Letichevsky Development of Rewriting Strategies , 1993, PLILP.

[51]  Christoph Benzmüller,et al.  Presenting Proofs with Adapted Granularity , 2009, KI.

[52]  Christoph Benzmüller,et al.  Proof Granularity as an Empirical Problem? , 2009, CSEDU.

[53]  Kim Dam Petersen,et al.  Recursive Boolean Functions In HOL , 1991, 1991., International Workshop on the HOL Theorem Proving System and Its Applications.

[54]  Claus-Peter Wirth,et al.  Descente Infinie + Deduction , 2004, Log. J. IGPL.

[55]  Wilfried Sieg,et al.  Normal Natural Deduction Proofs (in classical logic) , 1998, Stud Logica.

[56]  Neil V. Murray,et al.  On the Computational Intractabilityof Analytic Tableau Methods , 1994, Bull. IGPL.

[57]  Lucas Dixon,et al.  A proof planning framework for Isabelle , 2006 .

[58]  Stephan Schulz,et al.  System Description: E 0.81 , 2004, IJCAR.

[59]  Michael J. C. Gordon,et al.  From LCF to HOL: a short history , 2000, Proof, Language, and Interaction.

[60]  Toby Walsh,et al.  Coloured Rippling: An Extension of a Theorem Proving Heuristic , 1994, ECAI.

[61]  A. Fraenkel Untersuchungen über die Grundlagen der Mengenlehre , 1925 .

[62]  Jean-Paul Billon,et al.  The Disconnection Method - A Confluent Integration of Unification in the Analytic Framework , 1996, TABLEAUX.

[63]  Philipp Rümmer,et al.  A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic , 2008, LPAR.

[64]  John Seely Brown,et al.  Diagnostic Models for Procedural Bugs in Basic Mathematical Skills , 1978, Cogn. Sci..

[65]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[66]  Bruno Buchberger The PCS Prover in THEOREMA , 2001, EUROCAST.

[67]  Karsten Homann,et al.  Symbolisches Lösen mathematischer Probleme durch Kooperation algorithmischer und logischer Systeme , 1997, DISKI.

[68]  Nicolas Peltier,et al.  Pruning the Search Space and Extracting More Models in Tableaux , 1999, Log. J. IGPL.

[69]  Andrea Asperti,et al.  A new type for tactics , 2009 .

[70]  Philip Bille,et al.  A survey on tree edit distance and related problems , 2005, Theor. Comput. Sci..

[71]  Armin Fiedler,et al.  P.rex: An Interactive Proof Explainer , 2001, IJCAR.

[72]  Alan Bundy,et al.  Experiments in Automating Hardware Verification Using Inductive Proof Planning , 1996, FMCAD.

[73]  Andrej Bauer,et al.  Analytica – An Experiment in Combining Theorem Proving and Symbolic Computation , 1996, Journal of Automated Reasoning.

[74]  Louise A. Dennis,et al.  On the Comparison of Proof Planning Systems: lambdaCLAM, Omega and IsaPlanner , 2006, Calculemus.

[75]  Christoph Benzmüller,et al.  Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.

[76]  Ivana Kruijff-Korbayová,et al.  A corpus of tutorial dialogs on theorem proving; the influence of the presentation of the study-material , 2006, LREC.

[77]  A. Fraenkel,et al.  Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .

[78]  L. Cruz-Filipe,et al.  A Decision Procedure for Equational Reasoning in Commutative Algebraic Structures , 2004 .

[79]  Serge Autexier,et al.  Hierarchical contextual reasoning , 2003 .

[80]  Warren D. Goldfarb,et al.  The Undecidability of the Second-Order Unification Problem , 1981, Theor. Comput. Sci..

[81]  Frank Pfenning,et al.  TPS: A theorem-proving system for classical type theory , 1996, Journal of Automated Reasoning.

[82]  Dominique Pastre,et al.  MUSCADET 2.3: A Knowledge-Based Theorem Prover Based on Natural Deduction , 2001, IJCAR.

[83]  J. H. Geuvers,et al.  Proof assistants: History, ideas and future , 2009 .

[84]  Stephan Schulz,et al.  E - a brainiac theorem prover , 2002, AI Commun..

[85]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[86]  A. O. Slisenko,et al.  An Algorithm for a Machine Search of a Natural Logical Deduction in a Propositional Calculus , 1983 .

[87]  John Harrison,et al.  Reasoning About the Reals: The Marriage of HOL and Maple , 1993, LPAR.

[88]  W. W. Bledsoe,et al.  Challenge problems in elementary calculus , 1990, Journal of Automated Reasoning.

[89]  Serge Autexier,et al.  A Tactic Language for Declarative Proofs , 2010, ITP.

[90]  Kurt VanLehn,et al.  Advanced Geometry Tutor: An intelligent tutor that teaches proof-writing with construction , 2005, AIED.

[91]  de Ng Dick Bruijn,et al.  The Mathematical Vernacular, A Language for Mathematics with Typed Sets , 1994 .

[92]  Gilles Dowek From proof theory to theories theory , 2010 .

[93]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[94]  Philip N. Klein,et al.  Computing the Edit-Distance between Unrooted Ordered Trees , 1998, ESA.

[95]  Eelco Visser,et al.  Stratego: A Language for Program Transformation Based on Rewriting Strategies , 2001, RTA.

[96]  Fairouz Kamareddine,et al.  MathLang: Experience-driven Development of a New Mathematical Language , 2004, MKM Symposium.

[97]  Reiner Hähnle,et al.  Tableaux and Related Methods , 2001, Handbook of Automated Reasoning.

[98]  J. S. Moore,et al.  A Mechanically Checked Proof of the Correctness of the Kernel of the Amd5 K 86 Tm Floating-point Division Algorithm , 1996 .

[99]  Gilles Kahn,et al.  Proof by Pointing , 1994, TACS.

[100]  Erica Melis,et al.  Knowledge-Based Proof Planning , 1999, Artif. Intell..

[101]  Ralph-Johan Back,et al.  Structured calculational proof , 1996, Formal Aspects of Computing.

[102]  Subbarao Kambhampati,et al.  Sapa: A Scalable Multi-objective Heuristic Metric Temporal Planner , 2002 .

[103]  E. Beth The foundations of mathematics : a study in the philosophy of science , 1959 .

[104]  Kurt VanLehn,et al.  Repair Theory: A Generative Theory of Bugs in Procedural Skills , 1980, Cogn. Sci..

[105]  Volker Sorge,et al.  Comparing Approaches to the Exploration of the Domain of Residue Classes , 2002, J. Symb. Comput..

[106]  Daniel Bryce,et al.  Planning Graph Heuristics for Belief Space Search , 2006, J. Artif. Intell. Res..

[107]  Jens Otten,et al.  leanCoP 2.0and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuitionistic Logic (System Descriptions) , 2008, IJCAR.

[108]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[109]  Dov M. Gabbay,et al.  Goal-Directed Proof Theory , 2000 .

[110]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[111]  Paul Bernays,et al.  A System of Axiomatic Set Theory , 1976 .

[112]  Xiaorong Huang,et al.  PROVERB– A System Explaining Machine-Found Proofs , 2019, Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society.

[113]  William McCune,et al.  Solution of the Robbins Problem , 1997, Journal of Automated Reasoning.

[114]  Gary R. Morrison,et al.  The Effects of Feedback and Incentives on Achievement in Computer-Based Instruction , 1995 .

[115]  Martin Giese,et al.  Proof search without backtracking for free variable tableaux , 2002 .

[116]  I. V. Ramakrishnan,et al.  Term Indexing , 1995, Lecture Notes in Computer Science.

[117]  Peter Koepke,et al.  Premise Selection in the Naproche System , 2010, IJCAR.

[118]  Jörg H. Siekmann,et al.  Natural Language Dialog with a Tutor System for Mathematical Proofs , 2005, Cognitive Systems.

[119]  William McCune,et al.  Mace4 Reference Manual and Guide , 2003, ArXiv.

[120]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[121]  F. Wiedijk,et al.  The challenge of computer mathematics , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[122]  Wayne Snyder,et al.  Higher-Order Unification Revisited: Complete Sets of Transformations , 1989, J. Symb. Comput..

[123]  Christoph Benzmüller,et al.  Judging Granularity for Automated Mathematics Teaching , 2006, ICLP 2006.

[124]  Andrew Ireland,et al.  The Use of Planning Critics in Mechanizing Inductive Proofs , 1992, LPAR.

[125]  John Harrison,et al.  HOL Light: A Tutorial Introduction , 1996, FMCAD.

[126]  Tobias Nipkow,et al.  Ordered Rewriting and Confluence , 1990, CADE.

[127]  Frank van Harmelen,et al.  The Oyster-Clam System , 1990, CADE.

[128]  John Harrison,et al.  Handbook of Practical Logic and Automated Reasoning , 2009 .

[129]  Jörg H. Siekmann,et al.  Proof Development with Ωmega: The Irrationality of \(\sqrt 2\) , 2003 .

[130]  Dale A. Miller,et al.  Proof Explanation and Revision , 1987 .

[131]  Claude Kirchner,et al.  Superdeduction at Work , 2007, Rewriting, Computation and Proof.

[132]  Tobias Nipkow,et al.  The Isabelle Reference Manual , 2007 .

[133]  Erica Melis Design of Erroneous Examples for ACTIVEMATH , 2005, AIED.

[134]  George Boole,et al.  The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning , 2007 .

[135]  H. Gelernter,et al.  Realization of a geometry theorem proving machine , 1995, IFIP Congress.

[136]  Ozan Kahramanogullari,et al.  Maude as a Platform for Designing and Implementing Deep Inference Systems , 2008, RULE@RDP.

[137]  Christoph Benzmüller,et al.  Deep Inference for Automated Proof Tutoring? , 2007, KI.

[138]  William McCune,et al.  OTTER 3.0 Reference Manual and Guide , 1994 .

[139]  Ian Green,et al.  System description : Proof planning in higher-order logic with λ Clam , 1998 .

[140]  K. Appel,et al.  The Solution of the Four-Color-Map Problem , 1977 .

[141]  John McCarthy,et al.  Computer programs for checking mathematical proofs , 1962 .

[142]  Christoph Kreitz,et al.  Connection-based Theorem Proving in Classical and Non-classical Logics , 1999, J. Univers. Comput. Sci..

[143]  Laurent Henocque,et al.  Finite Model Search for Equational Theories (FMSET) , 1998, AISC.

[144]  Alan Bundy,et al.  The Use of Explicit Plans to Guide Inductive Proofs , 1988, CADE.

[145]  Hélène Kirchner,et al.  A Compiler for Rewrite Programs in Associative-Commutative Theories , 1998, PLILP/ALP.

[146]  Larry Wos The problem of finding a mapping between clause representation and natural-deduction representation , 2004, Journal of Automated Reasoning.

[147]  William M. Farmer,et al.  The IMPS User's Manual , 1995 .

[148]  Lawrence C. Paulson,et al.  A Higher-Order Implementation of Rewriting , 1983, Sci. Comput. Program..

[149]  Christoph Benzmüller,et al.  Towards Computer-Assisted Proof Tutoring , 2007 .

[150]  Paul A. Cairns,et al.  Integrating Searching and Authoring in Mizar , 2007, Journal of Automated Reasoning.

[151]  Martin Giese,et al.  Incremental Closure of Free Variable Tableaux , 2001, IJCAR.

[152]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[153]  Paul Cairns Alcor: A user interface for Mizar , 2004 .

[154]  Christoph Benzmüller,et al.  A Generic Modular Data Structure for Proof Attempts Alternating on Ideas and Granularity , 2005, MKM.

[155]  Richard Sommer,et al.  A Computer Environment for Writing Ordinary Mathematical Proofs , 2001, LPAR.

[156]  John Harrison,et al.  Extending the HOL Theorem Prover with a Computer Algebra System to Reason about the Reals , 1993, HUG.

[157]  Rp Rob Nederpelt Weak Type Theory : a formal language for mathematics , 2002 .

[158]  Karem A. Sakallah,et al.  GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.

[159]  Volker Sorge,et al.  Integrating Computer Algebra into Proof Planning , 1998, Journal of Automated Reasoning.

[160]  Marcello D'Agostino,et al.  The Taming of the Cut. Classical Refutations with Analytic Cut , 1994, J. Log. Comput..

[161]  Joris Van der Hoeven GNU TeXmacs, A free, structured, wysiwyg and technical text editor , 2001 .

[162]  Xiaorong Huang,et al.  Reconstruction Proofs at the Assertion Level , 1994, CADE.

[163]  Axel Schairer,et al.  Transformations of specifications and proofs to support an evolutionary formal software development , 2006 .

[164]  George Boole,et al.  The Laws of Thought , 2003 .

[165]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[166]  John L. Casti,et al.  At the limit , 1998, Nature.

[167]  Wolfgang Bibel,et al.  SETHEO: A high-performance theorem prover , 1992, Journal of Automated Reasoning.

[168]  Sylvie Pesty,et al.  The Baghera project: a multi-agent architecture for human learning , 2003 .

[169]  Christoph Benzmüller,et al.  Assertion Application in Theorem Proving and Proof Planning , 2003, IJCAI.

[170]  David Aspinall,et al.  Proof General: A Generic Tool for Proof Development , 2000, TACAS.

[172]  Ingo Dahn,et al.  Integration of Automated and Interactive Theorem Proving in ILP , 1997, CADE.

[173]  Gérard P. Huet,et al.  The Zipper , 1997, Journal of Functional Programming.

[174]  Alexander V. Lyaletski,et al.  Evidence Algorithm and Sequent Logical Inference Search , 1999, LPAR.

[175]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[176]  Serge Autexier,et al.  Textbook Proofs Meet Formal Logic - The Problem of Underspecification and Granularity , 2005, MKM.

[177]  Bernhard Beckert Depth-first proof search without backtracking for free-variable clausal tableaux , 2003, J. Symb. Comput..

[178]  Benjamin Wack Typage et déduction dans le calcul de réécriture. (Type systems and deduction in the rewriting calculus) , 2005 .

[179]  Neil V. Murray,et al.  Inference with path resolution and semantic graphs , 1987, JACM.

[180]  E. Feigenbaum,et al.  Computers and Thought , 1963 .

[181]  Bor-Yuh Evan Chang,et al.  Human-Readable Machine-Verifiable Proofs for Teaching Constructive Logic , 2001 .

[182]  Dieter Hutter,et al.  The Development Graph Manager MAYA , 2002, AMAST.

[183]  Andrea Asperti,et al.  A Content Based Mathematical Search Engine: Whelp , 2004, TYPES.

[184]  Andrzej Trybulec,et al.  Computer Assisted Reasoning with MIZAR , 1985, IJCAI.

[185]  Michael Norrish,et al.  seL4: formal verification of an OS kernel , 2009, SOSP '09.

[186]  Jennifer J. Burg,et al.  A tutorial program for propositional logic with human/computer interactive learning , 2002, SIGCSE '02.

[187]  Wayne Snyder,et al.  Basic Paramodulation and Superposition , 1992, CADE.

[188]  Klaus Grue,et al.  The Layers of Logiweb , 2007, Calculemus/MKM.

[189]  W. Reif,et al.  Theorem Proving in Large Theories , 1998 .

[190]  Wolfgang Bibel,et al.  On Matrices with Connections , 1981, JACM.

[191]  Jacques D. Fleuriot,et al.  A proof-centric approach to mathematical assistants , 2006, J. Appl. Log..

[192]  Gilles Bisson,et al.  Searching for student intermediate mental steps , 2007 .

[193]  W. W. Bledsoe,et al.  Variable Elimination and Chaining in a Resolution-based Prover for Inequalities , 1980, CADE.

[194]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[195]  Alan Bundy Rippling: greatest hits , 1996 .

[196]  Dominik Dietrich,et al.  Crystal: Integrating Structured Queries into a Tactic Language , 2010, Journal of Automated Reasoning.

[197]  Adele Goldberg,et al.  Computer-assisted instruction: the application of theorem-proving to adaptive response analysis , 1973, SCOU.

[198]  Hélène Kirchner,et al.  Completion of a Set of Rules Modulo a Set of Equations , 1986, SIAM J. Comput..

[199]  Dominique Pastre Strong and weak points of the MUSCADET theorem prover - examples from CASC-JC , 2002, AI Commun..

[200]  P. Koepke,et al.  The Naproche System , 2009 .

[201]  Jörg H. Siekmann,et al.  The Markgraf Karl Refutation Procedure , 1980, IJCAI.

[202]  Alessio Guglielmi POLYNOMIAL SIZE DEEP-INFERENCE PROOFS INSTEAD OF EXPONENTIAL SIZE SHALLOW-INFERENCE PROOFS , 2008 .

[203]  Joel A. Michael,et al.  Hinting as a Tactic in One-on-One Tutoring , 1996 .

[204]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[205]  Claudio Sacerdoti Coen Declarative Representation of Proof Terms , 2009, Journal of Automated Reasoning.

[206]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[207]  Dominique Larchey-Wendling,et al.  Automated Reasoning with Analytic Tableaux and Related Methods , 2013, Lecture Notes in Computer Science.

[208]  Peter B. Andrews Transforming Matings into Natural Deduction Proofs , 1980, CADE.

[209]  Johann Schumann Automatic Verification of Cryptographic Protocols with SETHEO , 1997, CADE.

[210]  Claude Kirchner,et al.  Rewriting with Strategies in ELAN: A Functional Semantics , 2001, Int. J. Found. Comput. Sci..

[211]  Ewen Denney,et al.  Hiproofs: A Hierarchical Notion of Proof Tree , 2006, MFPS.

[212]  Arjeh M. Cohen,et al.  Integrating computational and deduction systems using OpenMath , 1999, Calculemus.

[213]  Christoph Benzmüller,et al.  Granularity-Adaptive Proof Presentation , 2009, AIED.

[214]  Manfred Pinkal,et al.  Linguistic Processing in a Mathematics Tutoring System: Cooperative Input Interpretation and Dialogue Modelling , 2011, Resource-Adaptive Cognitive Processes.

[215]  Ewen Denney,et al.  Tactics for Hierarchical Proof , 2010, Math. Comput. Sci..

[216]  Alessio Guglielmi,et al.  On the proof complexity of deep inference , 2009, TOCL.

[217]  Wolfgang Schreiner,et al.  The RISC ProofNavigator: a proving assistant for program verification in the classroom , 2009, Formal Aspects of Computing.

[218]  John Harrison,et al.  Proof Style , 1996, TYPES.

[219]  S. Doaitse Swierstra,et al.  Fast, Error Correcting Parser Combinatiors: A Short Tutorial , 1999, SOFSEM.

[220]  Christoph Lüth,et al.  A Framework for Interactive Proof , 2007, Calculemus/MKM.

[221]  Luca Padovani,et al.  HELM and the Semantic Math-Web , 2001, TPHOLs.

[222]  J. Hattie,et al.  The Power of Feedback , 2007 .

[223]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[224]  Christoph M. Hoffmann,et al.  Pattern Matching in Trees , 1982, JACM.

[225]  Andrew Adams,et al.  Computer Algebra Meets Automated Theorem Proving: Integrating Maple and PVS , 2001, TPHOLs.

[226]  John Harrison,et al.  A Mizar Mode for HOL , 1996, TPHOLs.

[227]  D. Barton,et al.  Grundlagen der Analysis , 1934 .

[228]  Patrik Haslum,et al.  Flexible Abstraction Heuristics for Optimal Sequential Planning , 2007, ICAPS.

[229]  Erica Melis,et al.  Constraint Solving for Proof Planning , 2004, Journal of Automated Reasoning.

[230]  Konstantin Verchinine,et al.  SAD as a mathematical assistant - how should we go from here to there? , 2006, J. Appl. Log..

[231]  Matt Kaufmann,et al.  Meta Reasoning in ACL2 , 2005, TPHOLs.

[232]  Lincoln A. Wallen,et al.  Automated proof search in non-classical logics - efficient matrix proof methods for modal and intuitionistic logics , 1990, MIT Press series in artificial intelligence.

[233]  Volker Sorge,et al.  Proof Planning: A Fresh Start? , 2001 .

[234]  Andrew Ireland,et al.  Productive use of failure in inductive proof , 1996, Journal of Automated Reasoning.

[235]  Claude Kirchner,et al.  Cut Elimination in Deduction Modulo by Abstract Completion , 2007, LFCS.

[236]  Jörg Hoffmann,et al.  FF: The Fast-Forward Planning System , 2001, AI Mag..

[237]  Christophe Ringeissen,et al.  Pattern-Matching Compiler , 2001, Electron. Notes Theor. Comput. Sci..

[238]  Burkhart Wolff,et al.  Assisted Proof Document Authoring , 2005, MKM.

[239]  David Delahaye,et al.  Dealing with algebraic expressions over a field in Coq using Maple , 2005, J. Symb. Comput..

[240]  Alan Bundy A Critique of Proof Planning , 2002, Computational Logic: Logic Programming and Beyond.

[241]  Serge Autexier,et al.  PLATΩ : A Mediator between Text-Editors and Proof Assistance Systems , 2006 .

[242]  Herbert Kuchen,et al.  E-assessment of Mathematical Proofs: Chances and Challenges for Students and Tutors , 2008, 2008 International Conference on Computer Science and Software Engineering.

[243]  Christoph Lingenfelder,et al.  Structuring Computer Generated Proofs , 1989, IJCAI.

[244]  Christoph Benzmüller Equality and Extensionality in Higher-Order Theorem Proving , 1999 .

[245]  S. P. Luttik,et al.  Specification of rewriting strategies , 1997 .

[246]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[247]  Henri Lesourd Integrating Proof Assistants as Reasoning and Verication Tools into a Scientic WYSIWYG Editor , 2005 .

[248]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[249]  Herman Geuvers,et al.  A Document-Oriented Coq Plugin for TeXmacs , 2006 .

[250]  Bernhard Beckert,et al.  The Even More Liberalized delta-Rule in Free Variable Semantic Tableaux , 1993, Kurt Gödel Colloquium.

[251]  Xiaorong Huang,et al.  Adaptation of declaratively represented methods in proof planning , 1998, Annals of Mathematics and Artificial Intelligence.

[252]  Markus M. Wenzel Miscellaneous Isabelle/Isar examples for Higher-Order Logic , 1999 .

[253]  Lawrence C. Paulson,et al.  Lightweight relevance filtering for machine-generated resolution problems , 2009, J. Appl. Log..

[254]  Lucas Dixon,et al.  IsaPlanner 2 : A Proof Planner for , 2007 .

[255]  Alan Bundy,et al.  A Survey of Automated Deduction , 1999, Artificial Intelligence Today.

[256]  Till Mossakowski Heterogeneous Development Graphs and Heterogeneous Borrowing , 2002, FoSSaCS.

[257]  Paul Klint,et al.  Compiling language definitions: the ASF+SDF compiler , 2000, TOPL.

[258]  B. Russell The Principles of Mathematics , 1938 .

[259]  Julian Richardson A Semantics for Proof Plans with Applications to Interactive Proof Planning , 2002, LPAR.

[260]  Santosh S. Vempala,et al.  Latent Semantic Indexing , 2000, PODS 2000.

[261]  Piotr Rudnicki Obvious inferences , 2004, Journal of Automated Reasoning.

[262]  Fairouz Kamareddine,et al.  A Refinement of de Bruijn's Formal Language of Mathematics , 2004, J. Log. Lang. Inf..

[263]  Erica Melis,et al.  AI-Techniques in Proof Planning , 1998, ECAI.

[264]  Don Syme DECLARE: A Prototype Declarative Proof System for Higher Order Logic , 1997 .

[265]  Erica Melis,et al.  System Description: Multi A Multi-strategy Proof Planner , 2005, CADE.

[266]  Pierre-Etienne Moreau,et al.  Optimizing Pattern Matching by Program Transformation , 2006 .

[267]  Michael Beeson,et al.  Automatic Generation of Epsilon-Delta Proofs of Continuity , 1998, AISC.

[268]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[269]  Fabio Massacci Simplification: A General Constraint Propagation Technique for Propositional and Modal Tableaux , 1998, TABLEAUX.

[270]  Alexander Leitsch,et al.  On Skolemization and Proof Complexity , 1994, Fundam. Informaticae.

[271]  Jian Zhang Constructing finite algebras with FALCON , 2004, Journal of Automated Reasoning.

[272]  John Staples,et al.  Formalizing a Hierarchical Structure of Practical Mathematical Reasoning , 1993, J. Log. Comput..

[273]  Erica Melis,et al.  Proof planning with multiple strategies , 2000, Artif. Intell..

[274]  Kuo-Chung Tai,et al.  The Tree-to-Tree Correction Problem , 1979, JACM.

[275]  Marvin R. G. Schiller Mechanizing Proof Step Evaluation for Mathematics Tutoring - The Case of Granularity , 2007 .

[276]  David Scott Warren,et al.  Efficient Prolog memory management for flexible control strategies , 1984, New Generation Computing.

[277]  Michael Beeson,et al.  Mathpert: Computer Support for Learning Algebra, Trig, and Calculus , 1992, LPAR.

[278]  Hélène Kirchner,et al.  Strategies of ELAN: meta-interpretation and partial evaluation , 1997 .

[279]  Michael Brady,et al.  Natural Language Generation as a Computational Problem: an Introduction , 1983 .

[280]  Andreas Meier System Description: TRAMP: Transformation of Machine-Found Proofs into ND-Proofs at the Assertion Level , 2000, CADE.

[281]  Jim Christian,et al.  Flatterms, discrimination nets, and fast term rewriting , 1993, Journal of Automated Reasoning.

[282]  Freek Wiedijk,et al.  Formal Proof Sketches , 2003, TYPES.

[283]  Jörg H. Siekmann,et al.  Concepts in Proof Planning , 2000, Intellectics and Computational Logic.

[284]  Richard Sommer,et al.  A Proof Environment for Teaching Mathematics , 2004, Journal of Automated Reasoning.

[285]  I. V. Ramakrishnan,et al.  Nonlinear pattern matching in trees , 1988, JACM.

[286]  Alan Smaill,et al.  Logic Program Synthesis in a Higher-Order Setting , 2000, Computational Logic.

[287]  Frank Pfenning,et al.  ETPS: A System to Help Students Write Formal Proofs , 2004, Journal of Automated Reasoning.

[288]  Peter B. Andrews More on the problem of finding a mapping between clause representation and natural-deduction representation , 2004, Journal of Automated Reasoning.

[289]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[290]  Wolfgang Windsteiger An automated prover for Zermelo-Fraenkel set theory in Theorema , 2006, J. Symb. Comput..

[291]  Vincent Zammit,et al.  On the Implementation of an Extensible Declarative Proof Language , 1999, TPHOLs.

[292]  Xiaorong Huang,et al.  Human oriented proof presentation - a reconstructive approach , 1996, DISKI.

[293]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[294]  Karen L. Myers Advisable Planning Systems , 1996 .

[295]  Christoph Benzmüller,et al.  Proof step analysis for proof tutoring - a learning approach to granularity , 2008, Teaching Mathematics and Computer Science.

[296]  Larry M. Hines Str+ve and Integers , 1994, CADE.

[297]  John Alan Robinson Proof = Guarantee + Explanation , 2000, Intellectics and Computational Logic.

[298]  Konstantin Verchinine,et al.  System for Automated Deduction (SAD): A Tool for Proof Verification , 2007, CADE.

[299]  Luc Maranget,et al.  Optimizing pattern matching , 2001, ICFP '01.

[300]  Nadia Nedjah,et al.  Optimal Left-to-Right Pattern-Matching Automata , 1997, ALP/HOA.

[301]  Robert E. Tarjan,et al.  Making data structures persistent , 1986, STOC '86.

[302]  Martin Giese,et al.  Saturation Up to Redundancy for Tableau and Sequent Calculi , 2006, LPAR.

[303]  Peter B. Andrews,et al.  System Description: TPS: A Theorem Proving System for Type Theory , 2000, CADE.

[304]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[305]  Thomas Hillenbrand,et al.  System Description: Waldmeister - Improvements in Performance and Ease of Use , 1999, CADE.

[306]  Nachum Dershowitz,et al.  Completion Without Failure11This research was supported in part by the National Science Foundation under grants DCR 85–13417 and DCR 85–16243. , 1989 .

[307]  Paul C. Gilmore,et al.  A Proof Method for Quantification Theory: Its Justification and Realization , 1960, IBM J. Res. Dev..

[308]  Pierre Corbineau,et al.  A Declarative Language for the Coq Proof Assistant , 2007, TYPES.

[309]  Patrick Suppes,et al.  An Interactive Calculus Theorem-Prover for Continuity Properties , 1989, J. Symb. Comput..

[310]  Johan Jeuring,et al.  Feedback in an interactive equation solver , 2006 .

[311]  Chad E. Brown,et al.  Verifying and Invalidating Textbook Proofs Using Scunak , 2006, MKM.

[312]  David Delahaye,et al.  Information Retrieval in a Coq Proof Library Using Type Isomorphisms , 1999, TYPES.

[313]  Jörg H. Siekmann,et al.  ΩMEGA: Resource-Adaptive Processes in an Automated Reasoning System , 2011, Resource-Adaptive Cognitive Processes.

[314]  Serge Autexier,et al.  Recent developments in mega's proof search programming language , 2010, ACCA.

[315]  R. Statman Bounds for proof-search and speed-up in the predicate calculus , 1978 .

[316]  Robert Gardner,et al.  Introduction To Real Analysis , 1994 .

[317]  Lennart Augustsson,et al.  Compiling Pattern Matching , 1985, FPCA.

[318]  John Arnold Kalman Automated Reasoning With Otter , 2001 .

[319]  Piotr Rudnicki,et al.  Information Retrieval in MML , 2003, MKM.

[320]  John Robert Harrison,et al.  Theorem proving with the real numbers , 1998, CPHC/BCS distinguished dissertations.

[321]  Pierre-Etienne Moreau,et al.  Implementing Deep Inference in Tom , 2005 .

[322]  Paul Klint,et al.  Term rewriting with traversal functions , 2003, TSEM.

[323]  Markus Wenzel,et al.  Isar - A Generic Interpretative Approach to Readable Formal Proof Documents , 1999, TPHOLs.

[324]  Serge Autexier,et al.  Atomic Metadeduction , 2009, KI.

[325]  Mark K. Singley,et al.  Deploying Intelligent Tutors on the Web: An Architecture and an Example , 1999 .

[326]  Xavier Leroy,et al.  Formal verification of a realistic compiler , 2009, CACM.

[327]  Gilles Dowek,et al.  Normalization in Supernatural deduction and in Deduction modulo , 2007 .

[328]  Daniel Solow,et al.  How to read and do proofs , 1982 .

[329]  Norbert Eisinger,et al.  The theorem prover SATCHMO : strategies, heuristics and applications , 1995, JFPLC.

[330]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[331]  Marian Vittek,et al.  A Compiler for Nondeterministic Term Rewriting Systems , 1996, RTA.

[332]  G. B. M. Principia Mathematica , 1911, Nature.

[333]  Arjeh M. Cohen,et al.  Connecting Proof Checkers and Computer Algebra Using OpenMath , 1999, TPHOLs.

[334]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[335]  Jim Grundy,et al.  Recording HOL Proofs in a Structured Browsable Format , 1997, AMAST.

[336]  Christoph Weidenbach System Description: Spass Version 1.0.0 , 1999, CADE.

[337]  Jacques Calmet,et al.  Structures for Symbolic Mathematical Reasoning and Computation , 1996, DISCO.

[338]  Richard Scheines,et al.  Computer Environments for Proof Construction , 1994, Interact. Learn. Environ..

[339]  Marc Wagner,et al.  Authoring Verified Documents by Interactive Proof Construction and Verification in Text-Editors , 2008, AISC/MKM/Calculemus.

[340]  Claude Kirchner,et al.  Principles of Superdeduction , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[341]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[342]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[343]  William M. Farmer,et al.  IMPS: An interactive mathematical proof system , 1990, Journal of Automated Reasoning.

[344]  Eelco Visser,et al.  A core language for rewriting , 1998, WRLA.

[345]  Robert S. Boyer,et al.  Computer Proofs of Limit Theorems , 1971, IJCAI.

[346]  Robert S. Boyer,et al.  A computational logic handbook , 1979, Perspectives in computing.

[347]  Luca Cardelli,et al.  Compiling a functional language , 1984, LFP '84.

[349]  Harald Ganzinger,et al.  Rewrite-Based Equational Theorem Proving with Selection and Simplification , 1994, J. Log. Comput..

[350]  José Meseguer,et al.  Towards a Strategy Language for Maude , 2005, WRLA.

[351]  K. Claessen,et al.  New Techniques that Improve MACE-style Finite Model Finding , 2007 .

[352]  Robin Milner,et al.  Edinburgh lcf: a mechanized logic of computation , 1978 .

[353]  Dale Miller,et al.  Expansion Tree Proofs and Their Conversion to Natural Deduction Proofs , 1984, CADE.

[354]  Don Syme,et al.  Three Tactic Theorem Proving , 1999, TPHOLs.

[355]  Nicolas Peltier,et al.  Simplifying and Generalizing Formulae in Tableaux. Pruning the Search Space and Building Models , 1997, TABLEAUX.

[356]  Christoph Benzmüller,et al.  Organization, Transformation, and Propagation of Mathematical Knowledge in Ωmega , 2008 .

[357]  Peter B. Andrews General Models, Descriptions, and Choice in Type Theory , 1972, J. Symb. Log..

[358]  J. F. Kelley,et al.  An empirical methodology for writing user-friendly natural language computer applications , 1983, CHI '83.

[359]  B. Konev,et al.  Solution lifting method for handling meta-variables in TH∃OREM∀ , 2005 .

[360]  J. A. Robinson,et al.  Handbook of Automated Reasoning (in 2 volumes) , 2001 .

[361]  Xiaorong Huang,et al.  Presenting Machine-Found Proofs , 1996, CADE.

[362]  Franz Oppacher,et al.  HARP: A tableau-based theorem prover , 1988, Journal of Automated Reasoning.

[363]  Tobias Nipkow,et al.  Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.

[364]  Piergiorgio Bertoli,et al.  The OMRS project: State of the art , 1998, Calculemus.

[365]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[366]  Austin Tate,et al.  O-Plan Mixed Initiative Planning Capabilities and Protocols , 1995 .

[367]  Bernhard Beckert,et al.  leanTAP: Lean tableau-based deduction , 1995, Journal of Automated Reasoning.

[368]  Andrea Asperti,et al.  User Interaction with the Matita Proof Assistant , 2007, Journal of Automated Reasoning.

[369]  Volker Sorge Non-Trivial Symbolic Computations in Proof Planning , 2000, FroCoS.

[370]  Jacques Calmet,et al.  Theorems and algorithms: an interface between Isabelle and Maple , 1995, ISSAC '95.

[371]  W. W. Bledsoe,et al.  Automatic Proofs of Theorems in Analysis Using Nonstandard Techniques , 1977, JACM.

[372]  Mark Buckley,et al.  Verification of Proof Steps for Tutoring Mathematical Proofs , 2007, AIED.

[373]  Gilles Kahn,et al.  Extracting Text from Proofs , 1995, TLCA.

[374]  Claus Zinn Supporting Tutorial Feedback to Student Help Requests and Errors in Symbolic Differentiation , 2006, Intelligent Tutoring Systems.

[375]  John K. Slaney,et al.  FINDER: Finite Domain Enumerator - System Description , 1994, CADE.

[376]  Johanna D. Moore,et al.  The Beetle and BeeDiff tutoring systems , 2007, SLaTE.

[377]  Erica Melis The "Limit" Domain , 1998, AIPS.

[378]  Jörg H. Siekmann,et al.  Tutorial dialogs on mathematical proofs , 2003, IJCAI 2003.