Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems

Learning-based methodologies increasingly find applications in safety-critical domains like autonomous driving and medical robotics. Due to the rare nature of dangerous events, real-world testing is prohibitively expensive and unscalable. In this work, we employ a probabilistic approach to safety evaluation in simulation, where we are concerned with computing the probability of dangerous events. We develop a novel rare-event simulation method that combines exploration, exploitation, and optimization techniques to find failure modes and estimate their rate of occurrence. We provide rigorous guarantees for the performance of our method in terms of both statistical and computational efficiency. Finally, we demonstrate the efficacy of our approach on a variety of scenarios, illustrating its usefulness as a tool for rapid sensitivity analysis and model comparison that are essential to developing and testing safety-critical autonomous systems.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[3]  D. Siegmund Importance Sampling in the Monte Carlo Study of Sequential Tests , 1976 .

[4]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[5]  J. D. Doll,et al.  Brownian dynamics as smart Monte Carlo simulation , 1978 .

[6]  A. Voter A Monte Carlo method for determining free‐energy differences and transition state theory rate constants , 1985 .

[7]  Reuven Y. Rubinstein,et al.  Efficiency of Multivariate Control Variates in Monte Carlo Simulation , 1985, Oper. Res..

[8]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[9]  Andrew W. Moore,et al.  Efficient memory-based learning for robot control , 1990 .

[10]  Man-Suk Oh,et al.  Adaptive importance sampling in monte carlo integration , 1992 .

[11]  Jonathan P. Bowen,et al.  Safety-critical systems, formal methods and standards , 1993, Softw. Eng. J..

[12]  John Cullyer,et al.  Safety critical systems , 1993, Microprocess. Microsystems.

[13]  S. Srihari Mixture Density Networks , 1994 .

[14]  Brian Jefferies Feynman-Kac Formulae , 1996 .

[15]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[16]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[17]  B. Nelson,et al.  Control Variates for Probability and Quantile Estimation , 1998 .

[18]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[19]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[20]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[21]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[22]  G. Roberts,et al.  Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .

[23]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[24]  Xiao-Li Meng,et al.  Warp Bridge Sampling , 2002 .

[25]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[26]  Vijay Kumar,et al.  Adaptive RRTs for Validating Hybrid Robotic Control Systems , 2004, WAFR.

[27]  Radford M. Neal Estimating Ratios of Normalizing Constants Using Linked Importance Sampling , 2005, math/0511216.

[28]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[29]  F. Cérou,et al.  Adaptive Multilevel Splitting for Rare Event Analysis , 2007 .

[30]  Cynthia Dwork,et al.  Differential Privacy: A Survey of Results , 2008, TAMC.

[31]  R. Firoozian Feedback Control Theory , 2009 .

[32]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[33]  Gerardo Rubino,et al.  Introduction to Rare Event Simulation , 2009, Rare Event Simulation using Monte Carlo Methods.

[34]  Alexandre Donzé,et al.  Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems , 2010, CAV.

[35]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[36]  Carl E. Rasmussen,et al.  PILCO: A Model-Based and Data-Efficient Approach to Policy Search , 2011, ICML.

[37]  Sriram Sankaranarayanan,et al.  S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems , 2011, TACAS.

[38]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[39]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[40]  Ari Pakman,et al.  Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians , 2012, 1208.4118.

[41]  Rémi Bardenet,et al.  Monte Carlo Methods , 2013, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[42]  Liam Paninski,et al.  Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions , 2013, NIPS.

[43]  Xin Chen,et al.  Flow*: An Analyzer for Non-linear Hybrid Systems , 2013, CAV.

[44]  Babak Shahbaba,et al.  Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.

[45]  Houssam Abbas,et al.  Functional gradient descent method for Metric Temporal Logic specifications , 2014, 2014 American Control Conference.

[46]  Sriram Sankaranarayanan,et al.  Multiple shooting, CEGAR-based falsification for hybrid systems , 2014, EMSOFT '14.

[47]  Babak Shahbaba,et al.  Split Hamiltonian Monte Carlo , 2011, Stat. Comput..

[48]  T. Lelièvre,et al.  ANALYSIS OF ADAPTIVE MULTILEVEL SPLITTING ALGORITHMS IN AN IDEALIZED CASE , 2014, 1405.1352.

[49]  Matthias Althoff,et al.  An Introduction to CORA 2015 , 2015, ARCH@CPSWeek.

[50]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[51]  Justin Domke,et al.  Reflection, Refraction, and Hamiltonian Monte Carlo , 2015, NIPS.

[52]  William F. Tosney,et al.  SPACE SAFETY IS NO ACCIDENT HOW THE AEROSPACE CORPORATION PROMOTES SPACE SAFETY , 2015 .

[53]  É. Moulines,et al.  Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm , 2015, 1507.05021.

[54]  Wei Chen,et al.  dReach: δ-Reachability Analysis for Hybrid Systems , 2015, TACAS.

[55]  Martin J. Wainwright,et al.  Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations , 2013, IEEE Transactions on Information Theory.

[56]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[57]  Jean-Yves Tourneret,et al.  A Hamiltonian Monte Carlo Method for Non-Smooth Energy Sampling , 2014, IEEE Transactions on Signal Processing.

[58]  John C. Duchi,et al.  Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences , 2016, NIPS.

[59]  Wojciech Zaremba,et al.  OpenAI Gym , 2016, ArXiv.

[60]  Alberto Bemporad,et al.  Predictive Control for Linear and Hybrid Systems , 2017 .

[61]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[62]  Michael Betancourt,et al.  A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.

[63]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[64]  Nidhi Kalra,et al.  Challenges and Approaches to Realizing Autonomous Vehicle Safety , 2017 .

[65]  Shie Mannor,et al.  End-to-End Differentiable Adversarial Imitation Learning , 2017, ICML.

[66]  Houssam Abbas,et al.  Smooth operator: Control using the smooth robustness of temporal logic , 2017, 2017 IEEE Conference on Control Technology and Applications (CCTA).

[67]  Amnon Shashua,et al.  On a Formal Model of Safe and Scalable Self-driving Cars , 2017, ArXiv.

[68]  Oren Mangoubi,et al.  Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions , 2017, 1708.07114.

[69]  Mykel J. Kochenderfer,et al.  Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks , 2017, CAV.

[70]  Mark E. Howard,et al.  When human beings are like drunk robots: Driverless vehicles, ethics, and the future of transport , 2017 .

[71]  Blaise Agüera y Arcas,et al.  Communication-Efficient Learning of Deep Networks from Decentralized Data , 2016, AISTATS.

[72]  Russ Tedrake,et al.  Verifying Neural Networks with Mixed Integer Programming , 2017, ArXiv.

[73]  Stavroula Birda ! ! ! ! ! ! ! ! ! ! Reflection , 2018 .

[74]  Alexander A. Alemi,et al.  WAIC, but Why? Generative Ensembles for Robust Anomaly Detection , 2018 .

[75]  Christopher Ré Software 2.0 and Snorkel: Beyond Hand-Labeled Data , 2018, KDD.

[76]  Georgios Fainekos,et al.  Falsification of Temporal Logic Requirements Using Gradient Based Local Search in Space and Time , 2018, ADHS.

[77]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[78]  John C. Duchi,et al.  Certifying Some Distributional Robustness with Principled Adversarial Training , 2017, ICLR.

[79]  Russ Tedrake,et al.  Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation , 2018, NeurIPS.

[80]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[81]  Bin Yang,et al.  Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[82]  Ajmal Mian,et al.  Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey , 2018, IEEE Access.

[83]  Hongseok Namkoong,et al.  In-silico Risk Analysis of Personalized Artificial Pancreas Controllers via Rare-event Simulation , 2018, ArXiv.

[84]  Jürgen Schmidhuber,et al.  World Models , 2018, ArXiv.

[85]  Joshua V. Dillon,et al.  NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport , 2019, 1903.03704.

[86]  Sanjay Mehrotra,et al.  Distributionally Robust Optimization: A Review , 2019, ArXiv.

[87]  Trevor Darrell,et al.  Monocular Plan View Networks for Autonomous Driving , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[88]  Y. Benkler Don’t let industry write the rules for AI , 2019, Nature.

[89]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[90]  Matthew O'Kelly,et al.  Efficient Black-box Assessment of Autonomous Vehicle Safety , 2019, ArXiv.

[91]  Pushmeet Kohli,et al.  Rigorous Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures , 2018, ICLR.

[92]  Sanjit A. Seshia,et al.  VerifAI: A Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Systems , 2019, CAV.

[93]  Yee Whye Teh,et al.  A Statistical Approach to Assessing Neural Network Robustness , 2018, ICLR.

[94]  Mayank Bansal,et al.  ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst , 2018, Robotics: Science and Systems.

[95]  R. Sparrow Killer robots , 2019, Political Minefields.

[96]  Panagiotis Tsiotras,et al.  Minimum-fuel Powered Descent in the Presence of Random Disturbances , 2019, AIAA Scitech 2019 Forum.

[97]  Insup Lee,et al.  Verisig: verifying safety properties of hybrid systems with neural network controllers , 2018, HSCC.

[98]  Jyotirmoy V. Deshmukh,et al.  Automatic Testing and Falsification with Dynamically Constrained Reinforcement Learning , 2019, ArXiv.

[99]  Insup Lee,et al.  Case study: verifying the safety of an autonomous racing car with a neural network controller , 2019, HSCC.

[100]  Bitcoin Proof of Stake: A Peer-to-Peer Electronic Cash System , 2020 .

[101]  Peter Henderson,et al.  Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims , 2020, ArXiv.

[102]  B. Nachman,et al.  Anomaly detection with density estimation , 2020, Physical Review D.

[103]  Yujin Tang,et al.  Neuroevolution of self-interpretable agents , 2020, GECCO.

[104]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[105]  M. Pavone,et al.  Back-propagation through STL Specifications: Infusing Logical Structure into Gradient-Based Methods , 2020 .

[106]  Martin J. Wainwright,et al.  Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients , 2019, J. Mach. Learn. Res..

[107]  Mykel J. Kochenderfer,et al.  A Survey of Algorithms for Black-Box Safety Validation , 2020, J. Artif. Intell. Res..

[108]  Jeannette M. Wing Trustworthy AI , 2020, Commun. ACM.

[109]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..