Turquoise blue nanocrystalline pigment based on Li1.33Ti1.66O4: Synthesis and characterization
暂无分享,去创建一个
[1] M. Dondi,et al. Ni-doped hibonite (CaAl12O19): A new turquoise blue ceramic pigment , 2009 .
[2] D. Shi,et al. Synthesis and properties of Li–Ti–O spinel (LiTi2O4) , 2009 .
[3] Michele Dondi,et al. Colour Performance of Ceramic Nano-pigments , 2009 .
[4] B. Zhao,et al. Superconducting properties of spinel Li 1+ x Ti 2- x O 4 and their substitution effects , 2007 .
[5] L. Menabue,et al. Multitechnique approach to V-ZrSiO4 pigment characterization and synthesis optimization , 2007 .
[6] S. Furukawa,et al. Synthesis of new environment-friendly yellow pigments , 2006 .
[7] Xiuhua Wei,et al. Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique , 2006 .
[8] S. Ardizzone,et al. Structural and spectroscopic investigations of blue, vanadium-doped ZrSiO4 pigments prepared by a sol-gel route. , 2005, The journal of physical chemistry. B.
[9] T. Ohzuku,et al. Comparative study of Li[CrTi]O4, Li[Li1/3Ti5/3]O4 and Li1/2Fe1/2[Li1/2Fe1/2Ti]O4 in non-aqueous lithium cells , 2005 .
[10] J. Brus,et al. Solvothermal synthesis and electrochemical behavior of nanocrystalline cubic Li-Ti-O oxides with cationic disorder , 2005 .
[11] P. N. Lisboa-Filho,et al. Synthesis and characterization of Li2ZnTi3O8 spinel using the modified polymeric precursor method , 2003 .
[12] C. Julien,et al. Raman spectroscopic studies of lithium manganates with spinel structure , 2003 .
[13] J. F. Ryan,et al. Crystal growth and superconductivity of LiTi2O4 and Li1+1/3Ti2−1/3O4 , 2003 .
[14] J. Akimoto,et al. Structure and electron density analysis of oxide spinel LiTi2O4 , 2002 .
[15] Hugh M. Smith,et al. High performance pigments , 2001 .
[16] M. Kadleı́ková,et al. Raman spectra of synthetic sapphire , 2001 .
[17] M. Aguilar,et al. Local order in titania polymorphs , 2001 .
[18] M. Llusar,et al. Colour analysis of some cobalt-based blue pigments , 2001 .
[19] Markys G. Cain,et al. Nanostructured ceramics: a review of their potential , 2001 .
[20] R. Eppler. Glazes and glass coatings , 2000 .
[21] M. Thackeray. Spinel Electrodes for Lithium Batteries , 2000 .
[22] John M. Wills,et al. Structure of Spinel , 2000 .
[23] D. H. Bradhurst,et al. Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries , 1999 .
[24] S. Takai. Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography , 1999 .
[25] E. Longo,et al. Synthesis of PbTiO3 by use of polymeric precursors , 1998 .
[26] M. J. Smith,et al. Light scattering and luminescence studies of M(CF3SO3)x- polyether complexes containing trivalent cations , 1994 .
[27] F. Babonneau,et al. Spectroscopic characterization of sol-gel processing , 1988 .
[28] S. C. Parker,et al. On the cation distribution of spinels , 1988 .
[29] J. Livage. The gel route to transition metal oxides , 1986 .
[30] A. Navrotsky,et al. Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution , 2004 .
[31] D. Johnston,et al. High temperature superconductivity in the LiTiO ternary system , 1973 .
[32] A. Deschanvres,et al. Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .
[33] Roger G. Burns,et al. Mineralogical applications of crystal field theory , 1970 .
[34] H. Gilman,et al. Hexakis(trimethylsilyl)-2-butyne by trimethylsilylation of hexachloro-1,3-butadiene , 1968 .
[35] Stuart A. Rice,et al. Inorganic Electronic Spectroscopy , 1968 .
[36] A. L. Patterson. The Scherrer Formula for X-Ray Particle Size Determination , 1939 .