Turquoise blue nanocrystalline pigment based on Li1.33Ti1.66O4: Synthesis and characterization

[1]  M. Dondi,et al.  Ni-doped hibonite (CaAl12O19): A new turquoise blue ceramic pigment , 2009 .

[2]  D. Shi,et al.  Synthesis and properties of Li–Ti–O spinel (LiTi2O4) , 2009 .

[3]  Michele Dondi,et al.  Colour Performance of Ceramic Nano-pigments , 2009 .

[4]  B. Zhao,et al.  Superconducting properties of spinel Li 1+ x Ti 2- x O 4 and their substitution effects , 2007 .

[5]  L. Menabue,et al.  Multitechnique approach to V-ZrSiO4 pigment characterization and synthesis optimization , 2007 .

[6]  S. Furukawa,et al.  Synthesis of new environment-friendly yellow pigments , 2006 .

[7]  Xiuhua Wei,et al.  Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique , 2006 .

[8]  S. Ardizzone,et al.  Structural and spectroscopic investigations of blue, vanadium-doped ZrSiO4 pigments prepared by a sol-gel route. , 2005, The journal of physical chemistry. B.

[9]  T. Ohzuku,et al.  Comparative study of Li[CrTi]O4, Li[Li1/3Ti5/3]O4 and Li1/2Fe1/2[Li1/2Fe1/2Ti]O4 in non-aqueous lithium cells , 2005 .

[10]  J. Brus,et al.  Solvothermal synthesis and electrochemical behavior of nanocrystalline cubic Li-Ti-O oxides with cationic disorder , 2005 .

[11]  P. N. Lisboa-Filho,et al.  Synthesis and characterization of Li2ZnTi3O8 spinel using the modified polymeric precursor method , 2003 .

[12]  C. Julien,et al.  Raman spectroscopic studies of lithium manganates with spinel structure , 2003 .

[13]  J. F. Ryan,et al.  Crystal growth and superconductivity of LiTi2O4 and Li1+1/3Ti2−1/3O4 , 2003 .

[14]  J. Akimoto,et al.  Structure and electron density analysis of oxide spinel LiTi2O4 , 2002 .

[15]  Hugh M. Smith,et al.  High performance pigments , 2001 .

[16]  M. Kadleı́ková,et al.  Raman spectra of synthetic sapphire , 2001 .

[17]  M. Aguilar,et al.  Local order in titania polymorphs , 2001 .

[18]  M. Llusar,et al.  Colour analysis of some cobalt-based blue pigments , 2001 .

[19]  Markys G. Cain,et al.  Nanostructured ceramics: a review of their potential , 2001 .

[20]  R. Eppler Glazes and glass coatings , 2000 .

[21]  M. Thackeray Spinel Electrodes for Lithium Batteries , 2000 .

[22]  John M. Wills,et al.  Structure of Spinel , 2000 .

[23]  D. H. Bradhurst,et al.  Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries , 1999 .

[24]  S. Takai Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography , 1999 .

[25]  E. Longo,et al.  Synthesis of PbTiO3 by use of polymeric precursors , 1998 .

[26]  M. J. Smith,et al.  Light scattering and luminescence studies of M(CF3SO3)x- polyether complexes containing trivalent cations , 1994 .

[27]  F. Babonneau,et al.  Spectroscopic characterization of sol-gel processing , 1988 .

[28]  S. C. Parker,et al.  On the cation distribution of spinels , 1988 .

[29]  J. Livage The gel route to transition metal oxides , 1986 .

[30]  A. Navrotsky,et al.  Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution , 2004 .

[31]  D. Johnston,et al.  High temperature superconductivity in the LiTiO ternary system , 1973 .

[32]  A. Deschanvres,et al.  Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .

[33]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[34]  H. Gilman,et al.  Hexakis(trimethylsilyl)-2-butyne by trimethylsilylation of hexachloro-1,3-butadiene , 1968 .

[35]  Stuart A. Rice,et al.  Inorganic Electronic Spectroscopy , 1968 .

[36]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .