Fracture of Ti-Al3Ti metal-intermetallic laminate composites: Effects of lamination on resistance-curve behavior

The fracture toughness and resistance-curve (R-curve) behavior of Ti-Al3Ti metal-intermetallic laminate (MIL) composites have been studied in the crack-divider orientation, by examining the effect of ductile-laminate-layer thickness and volume fraction. The MIL composites were fabricated in open air by a novel one-step process, and the final structure consists of alternating layers of ductile Ti and brittle Al3Ti. Such a laminate architecture in conjunction with a relatively low volume fraction of tougher Ti (18 to 40 pct) was seen to augment the fracture toughness of the inherently brittle intermetallic by over an order of magnitude. Additionally, as a result of their low density, MIL composites exhibit a specific fracture toughness (K/ρ) on par with tougher but relatively denser ductile metals such as high-strength steel. Such vast improvements may be rationalized through the toughening provided by the ductile Ti layers. Specifically, toughening was obtained through plastically stretching the intact ductile Ti layers that formed bridging zones in the crack wake, thus reducing the crack driving force. Such toughening resulted in R-curve behavior, and the toughness values increased with an increase in the volume percentage of Ti. Weight-function methods were used to model the bridging behavior, and they indicated that large bridging zones (∼2 to 3 mm) were responsible for the observed increase in toughness. The role of large-scale bridging (LSB) conditions on the resistance curves is explored, and steady-state toughness (KSS) values are estimated using small-scale bridging (SSB) approximations. A new approach to gage the potential of laminate composites in terms of their true fracture-toughness values as determined from a cyclic crack-growth fatigue test is proposed, wherein small-scale specimens can be utilized to obtain fracture-toughness values.

[1]  Aashish Rohatgi,et al.  Resistance-curve and fracture behavior of Ti–Al3Ti metallic–intermetallic laminate (MIL) composites , 2003 .

[2]  K. Vecchio,et al.  Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites , 2005 .

[3]  J. Lewandowski,et al.  Toughening Mechanisms in Al/Al-SiC Laminated Metal Composites , 1996 .

[4]  C. Ward-Close,et al.  Intermetallic-matrix composites—a review , 1996 .

[5]  R. Ritchie,et al.  Ductile-phase toughening and Fatigue-Crack Growth in Nb-Reinforced Molybdenum Disilicide Intermetallic Composites , 1992, Metallurgical and Materials Transactions A.

[6]  B. Derby,et al.  Fracture of metal/ceramic laminates—II. Crack growth resistance and toughness , 1999 .

[7]  Robert M. McMeeking,et al.  On the toughness of brittle materials reinforced with a ductile phase , 1988 .

[8]  M. Enoki,et al.  Microstructural analysis and mechanical properties of in situ Nb/Nb-aluminide layered materials , 2002 .

[9]  M. C. Shaw,et al.  Cracking and damage mechanisms in ceramic/metal multilayers , 1993 .

[10]  R. Ritchie,et al.  Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance , 1994 .

[11]  G. Odette,et al.  Ductile phase toughening mechanisms in a TiAlTiNb laminate composite , 1992 .

[12]  Robert W. Cahn,et al.  Materials science and technology : a comprehensive treatment , 2000 .

[13]  R. M. Cannon,et al.  Fracture and fatigue-crack growth along aluminum-alumina interfaces , 1996 .

[14]  R. Ritchie,et al.  Laminated Nb/Nb3Al composites : effect of layer thickness on fatigue and fracture behavior , 1997 .

[15]  D. Alman Fabrication, Structure and Properties of Aluminum-Aluminide Layered Composites , 1996 .

[16]  Z. Xia,et al.  Fabrication of laminated metal–intermetallic composites by interlayer in-situ reaction , 1999 .

[17]  J. Lewandowski,et al.  Mechanical behaviour of laminated metal composites , 1996 .

[18]  M. C. Shaw,et al.  The mechanics of crack growth in layered materials , 1993 .

[19]  D. E. Alman,et al.  Microstructural and failure characteristics of metal-lntermetallic layered sheet composites , 1995 .

[20]  M. C. Shaw,et al.  Stress redistribution in ceramic/metal multilayers containing cracks , 1995 .

[21]  R. Ritchie,et al.  On the contrasting role of ductile-phase reinforcements in the fracture toughness and fatigue-crack propagation behavior of TiNb/γ-TiAl intermetallic matrix composites , 1992 .

[22]  J. Hawk,et al.  Processing, structure and properties of metal-intermetallic layered composites , 1995 .

[23]  J. M. Larsen,et al.  An Overview of Potential Titanium Aluminide Composites in Aerospace Applications , 1992 .

[24]  R. Ritchie,et al.  Toughening mechanisms in ductile niobium-reinforced niobium aluminide (Nb/Nb3Al) in situ composites , 1995 .

[25]  M. Kakihana,et al.  Materials Research Society Symposium - Proceedings , 2000 .

[26]  K. Venkateswara,et al.  Fracture and Fatigue Behavior in Nb 3 Al+ Nb Intermetallic Composites , 1992 .

[27]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[28]  B. Derby,et al.  Fracture of metal/ceramic laminates-I. Transition from single to multiple cracking , 1999 .

[29]  P. A. Mataga Deformation of crack-bridging ductile reinforcements in toughened brittle materials , 1989 .

[30]  A. Evans,et al.  The strength and fracture of alumina bonded with aluminum alloys , 1989 .

[31]  Yonggang Huang,et al.  The role of metal plasticity and interfacial strength in the cracking of metal/ceramic laminates , 1995 .

[32]  A. Evans,et al.  On the toughening of ceramics by strong reinforcements , 1986 .

[33]  J. Rawers,et al.  Metal-intermetallic composites formed by reaction-sintering metal foils , 1993 .

[34]  J. Rawers,et al.  Metal- intermetallic composites formed by reaction-sintering elemental powders , 1993, Journal of Materials Science Letters.

[35]  J. Lewandowski,et al.  Deformation and fracture behavior of Nb in Nb5Si3/Nb laminates and its effect on laminate toughness , 1995 .

[36]  B. Cox Extrinsic factors in the mechanics of bridged cracks , 1991 .

[37]  K. Vecchio,et al.  Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells , 2001 .

[38]  R. Ritchie Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding☆ , 1988 .

[39]  W. Soboyejo,et al.  Effects of reinforcement morphology on the fatigue and fracture behavior of MoSi2/Nb composites , 1996 .

[40]  A. Evans,et al.  A test procedure for characterizing the toughening of brittle intermetallics by ductile reinforcements , 1989 .

[41]  A. Evans,et al.  On crack extension in ductile/brittle laminates , 1991 .

[42]  A. Evans,et al.  The strength of ceramics bonded with metals , 1988 .

[43]  C. H. Ward,et al.  Layered Materials for Structural Applications. , 1996 .

[44]  R. Ritchie Mechanisms of fatigue-crack propagation in ductile and brittle solids , 1999 .

[45]  H. Déve,et al.  On the toughening of intermetallics with ductile fibers : role of interfaces , 1991 .

[46]  Brian N. Cox,et al.  Concepts for bridged cracks in fracture and fatigue , 1994 .

[47]  M. Ashby,et al.  The deformation and fracture of constrained metal sheets , 1991 .

[48]  O. Sbaizero,et al.  Mode I Fracture Resistance of a Laminated Fiber-Reinforced Ceramic , 1991 .

[49]  Arthur H. Heuer,et al.  Transformation Toughening in ZrO2‐Containing Ceramics , 1987 .

[50]  R. Abbaschian,et al.  On the flow behavior of constrained ductile phases , 1993 .

[51]  G. Odette,et al.  Mechanical properties of metal-intermetallic microlaminate composites , 1996 .

[52]  P. Nicholson,et al.  Toughening of Glasses by Metallic Particles , 1981 .

[53]  C. P. Dogan,et al.  Intermetallic sheets synthesized from elemental Ti, AI, and Nb foils , 1995 .

[54]  M. Enoki,et al.  Formation Behavior of Aluminide Layers during the Fabrication of Nb/Nb-Aluminide Laminate Materials from Nb and Al Foil , 1999 .

[55]  R. Ritchie,et al.  Crack Growth in a ductile-phase-toughened in situ intermetallic composite under monotonic and cyclic loading , 1993 .

[56]  Amit K. Ghosh,et al.  Bridge toughening enhancement in double-notched MoSi2/Nb model composites , 1996 .

[57]  A. Evans Perspective on the Development of High‐Toughness Ceramics , 1990 .

[58]  D. Shah,et al.  Ductile Phase Toughening of Brittle Intermetallics , 1990 .

[59]  K. Vecchio,et al.  Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air , 2001 .

[60]  E. M. Lui,et al.  Fatigue and Fracture , 2005 .

[61]  R. Ritchie,et al.  Fracture toughness and R-Curve behavior of laminated brittle-matrix composites , 1998 .

[62]  R. Ritchie,et al.  Fracture and fatigue-crack growth behavior in ductile-phase toughened molybdenum disilicide: Effects of niobium wirevs particulate reinforcements , 1996 .

[63]  R. Ritchie,et al.  Fatigue-crack propagation behavior of ductile/brittle laminated composites , 1999 .

[64]  J. Rawers,et al.  Crack initiation in laminated metal-intermetallic composites , 1996, Journal of Materials Science.

[65]  M. Enoki,et al.  Crack Propagation Behavior of Ni/NiAl Laminate Materials , 1999 .

[66]  R. Ritchie,et al.  Resistance-curve toughening in ductile/brittle layered structures: Behavior in Nb/Nb3Al laminates , 1996 .

[67]  M. Ashby,et al.  Flow characteristics of highly constrained metal wires , 1989 .

[68]  F. Erdogan,et al.  Toughening of Ceramics through Crack Bridging by Ductile Particles , 1989 .

[69]  G. Odette,et al.  On the micromechanics of low temperature strength and toughness of intermetallic/metallic microlaminate composites , 1996 .

[70]  C. Hom,et al.  Large scale bridging in brittle matrix composites , 1990 .

[71]  J. Rawers,et al.  Fracture characteristics of metal/intermetallic laminar composites produced by reaction sintering and hot pressing , 1995 .

[72]  A. Evans,et al.  Fracture Resistance Characteristics of a Metal‐Toughened Ceramic , 1993 .

[73]  M. Ashby,et al.  Toughening in brittle systems by ductile bridging ligaments , 1992 .

[74]  A. Evans,et al.  Toughening in composites of Al2O3 reinforced with Al , 1989 .

[75]  Amit K. Ghosh,et al.  Structure, strength and fracture resistance of interfaces in NiAl/Mo model laminates , 1999 .