A characterization of rough fractional type integral operators and Campanato estimates for their commutators on the variable exponent vanishing generalized Morrey spaces

In this paper, applying some properties of variable exponent analysis, we first dwell on Adams and Spanne type estimates for a class of fractional type integral operators of variable orders, respectively and then, obtain variable exponent generalized Campanato estimates for the corresponding commutators on the vanishing generalized Morrey spaces $VL_{\Pi }^{p\left( \cdot \right) ,w\left( \cdot \right) }\left( E\right) $ with variable exponent $p(\cdot )$ and bounded set $E$

[1]  K. Ho Fractional integral operators with homogeneous kernels on Morrey spaces with variable , 2017 .

[2]  Huili Han,et al.  Characterizations of some operators on the vanishing generalized Morrey spaces with variable exponent , 2016 .

[3]  S. Samko,et al.  On maximal and potential operators with rough kernels in variable exponent spaces , 2016 .

[4]  Jiang-Long Wu Boundedness for Riesz-type potential operators on Herz-Morrey spaces with variable exponent , 2015 .

[5]  Olli Toivanen,et al.  Lebesgue and Sobolev spaces with variable exponents , 2014 .

[6]  Natasha Samko,et al.  Maximal, potential and singular operators in vanishing generalized Morrey spaces , 2013, J. Glob. Optim..

[7]  N. Samko Weighted Hardy operators in the local generalized vanishing Morrey spaces , 2013 .

[8]  D. Adams,et al.  Regularity of Morrey commutators , 2012 .

[9]  D. Adams,et al.  Morrey Potentials and Harmonic Maps , 2011 .

[10]  Peter Hästö,et al.  Overview of differential equations with non-standard growth , 2010 .

[11]  T. Wunderli On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions , 2010 .

[12]  S. Samko,et al.  BOUNDEDNESS OF THE MAXIMAL, POTENTIAL, AND SINGULAR INTEGRAL OPERATORS IN THE GENERALIZED VARIABLE EXPONENT MORREY TYPE SPACES , 2010 .

[13]  Maria Alessandra Ragusa,et al.  Commutators of fractional integral operators on Vanishing-Morrey spaces , 2008, J. Glob. Optim..

[14]  S. Samko,et al.  Maximal and Potential Operators in Variable Exponent Morrey Spaces , 2008 .

[15]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[16]  J. Rodrigues,et al.  On stationary thermo-rheological viscous flows , 2006 .

[17]  D. Adams,et al.  Nonlinear potential analysis on Morrey spaces and their capacities , 2004 .

[18]  L. Diening,et al.  Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics , 2003 .

[19]  D. Cruz-Uribe,et al.  The maximal function on variable spaces. , 2003 .

[20]  L. Softova Singular Integrals and Commutators in Generalized Morrey Spaces , 2002, math/0204114.

[21]  Xianling Fan,et al.  On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .

[22]  Michael Taylor,et al.  Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .

[23]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[24]  K. Kurata,et al.  BOUNDEDNESS OF INTEGRAL OPERATORS ON GENERALIZED MORREY SPACES AND ITS APPLICATION TO SCHRODINGER OPERATORS , 2000 .

[25]  H. Arai,et al.  Morrey Spaces on Spaces of Homogeneous Type and Estimates for □b and the Cauchy‐Szegö Projection , 1997 .

[26]  M. Giaquinta Multiple integrals in the calculus of variations and non linear elliptic systems , 1981 .

[27]  D. Adams A note on Riesz potentials , 1975 .

[28]  Charles B. Morrey,et al.  On the solutions of quasi-linear elliptic partial differential equations , 1938 .

[29]  W. Orlicz,et al.  Über konjugierte Exponentenfolgen , 1931 .

[30]  WITH MAXIMAL , 2022 .

[31]  D. Cruz-Uribe,et al.  THE MAXIMAL FUNCTION ON VARIABLE L p SPACES , 2022 .