DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA) 1
暂无分享,去创建一个
Debashish Bhattacharya | D. Bhattacharya | H. Yoon | R. G. Sheath | Hwan Su Yoon | Kirsten M. Müller | Robert G. Sheath | Franklyn D. Ott | K. Müller | F. Ott | R. Sheath
[1] R. Gutell,et al. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[2] W. H. Longley. Taxonomy and Evolution , 1933, Nature.
[3] J. Palmer,et al. Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. , 1995, Molecular phylogenetics and evolution.
[4] Debashish Bhattacharya,et al. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[5] J. West,et al. LOW MOLECULAR WEIGHT CARBOHYDRATES OF THE BANGIOPHYCIDAE (RHODOPHYTA) 1 , 2003 .
[6] A. Weber,et al. Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic Red Algae, Galdieria sulphuraria and Cyanidioschyzon merolae, Reveals the Molecular Basis of the Metabolic Flexibility of Galdieria sulphuraria and Significant Differences in Carbohydrate Metabolism of Both Algae1 , 2005, Plant Physiology.
[7] K. Valentin,et al. Rubisco genes indicate a close phylogenetic relation between the plastids of Chromophyta and Rhodophyta , 1990, Plant Molecular Biology.
[8] Y. Inagaki,et al. Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. , 2004, Systematic biology.
[9] A. Knoll,et al. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. , 2004, American journal of botany.
[10] Alexei J Drummond,et al. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. , 2006, Molecular biology and evolution.
[11] Debashish Bhattacharya,et al. Photosynthetic eukaryotes unite: endosymbiosis connects the dots. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.
[12] Debashish Bhattacharya,et al. A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.
[13] T. Rintoul,et al. Systematics and biogeography of the Compsopogonales (Rhodophyta) with emphasis on the freshwater families in North America , 1999 .
[14] J. West,et al. Observations on Purpureofilum apyrenoidigerum gen. et sp. nov. from Australia and Bangiopsis subsimplex from India (Stylonematales, Bangiophyceae, Rhodophyta) , 2005 .
[15] Yves Van de Peer,et al. Evolutionary Relationships Among the Eukaryotic Crown Taxa Taking into Account Site-to-Site Rate Variation in 18S rRNA , 1997, Journal of Molecular Evolution.
[16] O. W. Odom,et al. A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity. , 2004, RNA.
[17] G. McFadden. Plastids and Protein Targeting 1 , 1999, The Journal of eukaryotic microbiology.
[18] L. Rothschild. Handbook of protoctista. The structure, cultivation, habitats and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi , 1990 .
[19] P. Kornmann. Sahlingia nov. gen. based on Erythrocladia subintegra (Erythropelfidales, Rhodophyta) , 1989 .
[20] B F Lang,et al. Complete Sequence of the Mitochondrial DNA of the Red Alga Porphyra purpurea: Cyanobacterial Introns and Shared Ancestry of Red and Green Algae , 1999, Plant Cell.
[21] J. Felsenstein. CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.
[22] J. Rochaix,et al. A multiprotein complex involved in chloroplast group II intron splicing. , 2004, RNA.
[23] R. G. Sheath,et al. Systematics of Bangia (Bangiales, Rhodophyta) in North America. II. Biogeographical trends in karyology: chromosome numbers and linkage with gene sequence phylogenetic trees , 2003 .
[24] T. Cavalier-smith,et al. A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.
[25] D. Swofford. PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .
[26] W. Nelson,et al. Pyrophyllon and Chlidophyllon (Erythropeltidales, Rhodophyta): two new genera for obligate epiphytic species previously placed in Porphyra, and a discussion of the orders Erythropeltidales and Bangiales , 2003 .
[27] D. Garbary,et al. The nature of the ancestral red alga: inferences from a cladistic analysis. , 1985, Bio Systems.
[28] J. Palmer,et al. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. , 1996, Molecular biology and evolution.
[29] O. Gascuel,et al. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.
[30] John P. Huelsenbeck,et al. MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..
[31] M. Chase,et al. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[32] D. Bhattacharya,et al. THE PHYLOGENY OF PLASTIDS: A REVIEW BASED ON COMPARISONS OF SMALL‐SUBUNIT RIBOSOMAL RNA CODING REGIONS , 1995 .
[33] J. Daniels,et al. Taxonomy and Evolution , 1987 .
[34] C. Ciniglia,et al. Comparative approaches to the taxonomy of the genus Galdieria Merola (Cyanidiales, Rhodophyta) , 2003 .
[35] N. Butterfield,et al. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.
[36] P. Thier,et al. The origin of red algae and the evolution of chloroplasts , 2022 .
[37] D. Bhattacharya,et al. From the Cover: The single, ancient origin of chromist plastids , 2002 .
[38] J. West,et al. Molecular phylogeny of Rhodochaete parvula (Bangiophycidae, Rhodophyta) , 2000 .
[39] D. Bhattacharya,et al. Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. , 2001, American journal of botany.
[40] William R. Taylor,et al. The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..
[41] A. Knoll,et al. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.
[42] E. Sheveleva,et al. Recent horizontal intron transfer to a chloroplast genome. , 2004, Nucleic acids research.
[43] M. Sanderson,et al. Error, bias, and long-branch attraction in data for two chloroplast photosystem genes in seed plants. , 2000, Molecular biology and evolution.
[44] Martin Vingron,et al. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..
[45] G. Saunders,et al. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. , 2004, American journal of botany.
[46] D. Bhattacharya,et al. Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids. , 2000 .
[47] Naiara Rodríguez-Ezpeleta,et al. Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes , 2005, Current Biology.
[48] D. Bhattacharya,et al. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. , 2005, Molecular biology and evolution.
[49] S. Adl,et al. The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.