DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA) 1

Previous phylogenetic studies of the Rhodophyta have provided a framework for understanding red algal phylogeny, but there still exists the need for a comprehensive analysis using a broad sampling of taxa and sufficient phylogenetic information to clearly define the major lineages. In this study, we determined 48 sequences of the PSI P700 chl a apoprotein A1 (psaA) and rbcL coding regions and established a robust red algal phylogeny to identify the major clades. The tree included most of the lineages of the Bangiophyceae (25 genera, 48 taxa). Seven well‐supported lineages were identified with this analysis with the Cyanidiales having the earliest divergence and being distinct from the remaining taxa; i.e. the Porphyridiales 1–3, Bangiales, Florideophyceae, and Compsopogonales. We also analyzed data sets with fewer taxa but using seven proteins or the DNA sequence from nine genes to resolve inter‐clade relationships. Based on all of these analyses, we propose that the Rhodophyta contains two new subphyla, the Cyanidiophytina with a single class, the Cyanidiophyceae, and the Rhodophytina with six classes, the Bangiophyceae, Compsopogonophyceae, Florideophyceae, Porphyridiophyceae classis nov. (which contains Porphyridium, Flintiella, and Erythrolobus), Rhodellophyceae, and Stylonematophyceae classis nov. (which contains Stylonema, Bangiopsis, Chroodactylon, Chroothece, Purpureofilum, Rhodosorus, Rhodospora, and Rufusia). We also describe a new order, Rhodellales, and a new family, Rhodellaceae (with Rhodella, Dixoniella, and Glaucosphaera).

[1]  R. Gutell,et al.  A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  W. H. Longley Taxonomy and Evolution , 1933, Nature.

[3]  J. Palmer,et al.  Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. , 1995, Molecular phylogenetics and evolution.

[4]  Debashish Bhattacharya,et al.  A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. West,et al.  LOW MOLECULAR WEIGHT CARBOHYDRATES OF THE BANGIOPHYCIDAE (RHODOPHYTA) 1 , 2003 .

[6]  A. Weber,et al.  Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic Red Algae, Galdieria sulphuraria and Cyanidioschyzon merolae, Reveals the Molecular Basis of the Metabolic Flexibility of Galdieria sulphuraria and Significant Differences in Carbohydrate Metabolism of Both Algae1 , 2005, Plant Physiology.

[7]  K. Valentin,et al.  Rubisco genes indicate a close phylogenetic relation between the plastids of Chromophyta and Rhodophyta , 1990, Plant Molecular Biology.

[8]  Y. Inagaki,et al.  Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. , 2004, Systematic biology.

[9]  A. Knoll,et al.  Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. , 2004, American journal of botany.

[10]  Alexei J Drummond,et al.  Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. , 2006, Molecular biology and evolution.

[11]  Debashish Bhattacharya,et al.  Photosynthetic eukaryotes unite: endosymbiosis connects the dots. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[13]  T. Rintoul,et al.  Systematics and biogeography of the Compsopogonales (Rhodophyta) with emphasis on the freshwater families in North America , 1999 .

[14]  J. West,et al.  Observations on Purpureofilum apyrenoidigerum gen. et sp. nov. from Australia and Bangiopsis subsimplex from India (Stylonematales, Bangiophyceae, Rhodophyta) , 2005 .

[15]  Yves Van de Peer,et al.  Evolutionary Relationships Among the Eukaryotic Crown Taxa Taking into Account Site-to-Site Rate Variation in 18S rRNA , 1997, Journal of Molecular Evolution.

[16]  O. W. Odom,et al.  A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity. , 2004, RNA.

[17]  G. McFadden Plastids and Protein Targeting 1 , 1999, The Journal of eukaryotic microbiology.

[18]  L. Rothschild Handbook of protoctista. The structure, cultivation, habitats and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi , 1990 .

[19]  P. Kornmann Sahlingia nov. gen. based on Erythrocladia subintegra (Erythropelfidales, Rhodophyta) , 1989 .

[20]  B F Lang,et al.  Complete Sequence of the Mitochondrial DNA of the Red Alga Porphyra purpurea: Cyanobacterial Introns and Shared Ancestry of Red and Green Algae , 1999, Plant Cell.

[21]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[22]  J. Rochaix,et al.  A multiprotein complex involved in chloroplast group II intron splicing. , 2004, RNA.

[23]  R. G. Sheath,et al.  Systematics of Bangia (Bangiales, Rhodophyta) in North America. II. Biogeographical trends in karyology: chromosome numbers and linkage with gene sequence phylogenetic trees , 2003 .

[24]  T. Cavalier-smith,et al.  A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.

[25]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[26]  W. Nelson,et al.  Pyrophyllon and Chlidophyllon (Erythropeltidales, Rhodophyta): two new genera for obligate epiphytic species previously placed in Porphyra, and a discussion of the orders Erythropeltidales and Bangiales , 2003 .

[27]  D. Garbary,et al.  The nature of the ancestral red alga: inferences from a cladistic analysis. , 1985, Bio Systems.

[28]  J. Palmer,et al.  Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. , 1996, Molecular biology and evolution.

[29]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[30]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[31]  M. Chase,et al.  A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Bhattacharya,et al.  THE PHYLOGENY OF PLASTIDS: A REVIEW BASED ON COMPARISONS OF SMALL‐SUBUNIT RIBOSOMAL RNA CODING REGIONS , 1995 .

[33]  J. Daniels,et al.  Taxonomy and Evolution , 1987 .

[34]  C. Ciniglia,et al.  Comparative approaches to the taxonomy of the genus Galdieria Merola (Cyanidiales, Rhodophyta) , 2003 .

[35]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[36]  P. Thier,et al.  The origin of red algae and the evolution of chloroplasts , 2022 .

[37]  D. Bhattacharya,et al.  From the Cover: The single, ancient origin of chromist plastids , 2002 .

[38]  J. West,et al.  Molecular phylogeny of Rhodochaete parvula (Bangiophycidae, Rhodophyta) , 2000 .

[39]  D. Bhattacharya,et al.  Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. , 2001, American journal of botany.

[40]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[41]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[42]  E. Sheveleva,et al.  Recent horizontal intron transfer to a chloroplast genome. , 2004, Nucleic acids research.

[43]  M. Sanderson,et al.  Error, bias, and long-branch attraction in data for two chloroplast photosystem genes in seed plants. , 2000, Molecular biology and evolution.

[44]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[45]  G. Saunders,et al.  Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. , 2004, American journal of botany.

[46]  D. Bhattacharya,et al.  Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids. , 2000 .

[47]  Naiara Rodríguez-Ezpeleta,et al.  Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes , 2005, Current Biology.

[48]  D. Bhattacharya,et al.  Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. , 2005, Molecular biology and evolution.

[49]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.