Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices

[1]  D. Beljonne,et al.  Collective Dipole‐Dominated Doping of Monolayer MoS2: Orientation and Magnitude Control via the Supramolecular Approach , 2020, Advanced Functional Materials.

[2]  M. Prato,et al.  Production and processing of graphene and related materials , 2020, 2D Materials.

[3]  A. Ciesielski,et al.  Tailoring the physicochemical properties of solution-processed transition metal dichalcogenides via molecular approaches. , 2019, Chemical communications.

[4]  J. Coleman,et al.  Equipartition of Energy Defines the Size-Thickness Relationship in Liquid-Exfoliated Nanosheets. , 2019, ACS nano.

[5]  Thomas M. Higgins,et al.  Electrolyte‐Gated n‐Type Transistors Produced from Aqueous Inks of WS2 Nanosheets , 2018, Advanced Functional Materials.

[6]  Jr-hau He,et al.  Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides , 2018, Chemical science.

[7]  A. R. McDonald,et al.  Two-Dimensional MoS2 Catalyzed Oxidation of Organic Thiols , 2018, Chemistry of Materials.

[8]  Simone Bertolazzi,et al.  Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. , 2018, Chemical Society reviews.

[9]  A. Ciesielski,et al.  Chemical sensing with 2D materials. , 2018, Chemical Society reviews.

[10]  J. Cheon,et al.  Recent Advances in the Solution-Based Preparation of Two-Dimensional Layered Transition Metal Chalcogenide Nanostructures. , 2018, Chemical reviews.

[11]  Ho Won Jang,et al.  Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites , 2018 .

[12]  Yi He,et al.  Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  V. Nicolosi,et al.  Solution processed thin film transistor from liquid phase exfoliated MoS 2 flakes , 2017 .

[14]  D. Tománek,et al.  Chemical and Electronic Repair Mechanism of Defects in MoS2 Monolayers. , 2017, ACS nano.

[15]  Jinlan Wang,et al.  Towards a Comprehensive Understanding of the Reaction Mechanisms Between Defective MoS2 and Thiol Molecules. , 2017, Angewandte Chemie.

[16]  J. Grossman,et al.  Atomic Structure and Dynamics of Defects in 2D MoS2 Bilayers , 2017, ACS omega.

[17]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[18]  Charlie Tsai,et al.  Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution , 2017, Nature Communications.

[19]  J. Coleman,et al.  All-printed thin-film transistors from networks of liquid-exfoliated nanosheets , 2017, Science.

[20]  K. Ohno,et al.  Defect-Induced Vibration Modes of Ar + -Irradiated MoS 2 , 2017 .

[21]  D. Schilter Thiol oxidation: A slippery slope , 2017 .

[22]  J. Coleman,et al.  2D‐Crystal‐Based Functional Inks , 2016, Advanced materials.

[23]  Jieun Yang,et al.  Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction , 2016, Advanced materials.

[24]  R Saito,et al.  Raman spectroscopy of transition metal dichalcogenides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  Xin Chen,et al.  Functionalization of Two‐Dimensional Transition‐Metal Dichalcogenides , 2016, Advanced materials.

[26]  O. Bouvard,et al.  In situ core‐level and valence‐band photoelectron spectroscopy of reactively sputtered tungsten oxide films , 2016 .

[27]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[28]  Yao Guo,et al.  The intrinsic origin of hysteresis in MoS2 field effect transistors. , 2016, Nanoscale.

[29]  Christoph Gadermaier,et al.  Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. , 2016, ACS nano.

[30]  Kazuhito Tsukagoshi,et al.  Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. , 2016, Chemical Society reviews.

[31]  H. Schmidt,et al.  Electronic Transport Properties of Transition Metal Dichalcogenide Field‐Effect Devices: Surface and Interface Effects , 2015 .

[32]  J. Coleman,et al.  Relating the optical absorption coefficient of nanosheet dispersions to the intrinsic monolayer absorption , 2015, 1511.04410.

[33]  Y. Jung,et al.  Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. , 2015, ACS nano.

[34]  Liping Huang,et al.  Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light , 2015, Scientific Reports.

[35]  H. Schmidt,et al.  Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. , 2015, Chemical Society reviews.

[36]  Benjamin J. Carey,et al.  Electronic Tuning of 2D MoS2 through Surface Functionalization , 2015, Advanced materials.

[37]  Hyungdong Lee,et al.  Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control , 2015, Nature Communications.

[38]  M. Schwab,et al.  Bulk transport and contact limitation of MoS2 multilayer flake transistors untangled via temperature‐dependent transport measurements , 2015 .

[39]  Lianzhou Wang,et al.  Two‐Dimensional Graphene Analogues for Biomedical Applications , 2015 .

[40]  B. Brennan,et al.  Effect of disorder on Raman scattering of single-layer Mo S 2 , 2015 .

[41]  Yu Chen,et al.  Two-dimensional graphene analogues for biomedical applications. , 2015, Chemical Society reviews.

[42]  Yunfeng Shi,et al.  Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. , 2015, ACS nano.

[43]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[44]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[45]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[46]  Jiantong Li,et al.  Inkjet Printing of MoS2 , 2014 .

[47]  K. Sivula,et al.  Multiflake Thin Film Electronic Devices of Solution Processed 2D MoS2 Enabled by Sonopolymer Assisted Exfoliation and Surface Modification , 2014 .

[48]  Niall McEvoy,et al.  Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets , 2014, Nature Communications.

[49]  F. Chiu A Review on Conduction Mechanisms in Dielectric Films , 2014 .

[50]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[51]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[52]  A. Ciesielski,et al.  Graphene via sonication assisted liquid-phase exfoliation. , 2014, Chemical Society reviews.

[53]  L. Ottaviano,et al.  Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum , 2013 .

[54]  M. Toney,et al.  A general relationship between disorder, aggregation and charge transport in conjugated polymers. , 2013, Nature materials.

[55]  Ching-Ping Wong,et al.  High‐Concentration Aqueous Dispersions of MoS2 , 2013 .

[56]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[57]  A. Mansur,et al.  Chemical functionalization of surfaces for building three-dimensional engineered biosensors , 2013 .

[58]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[59]  Mrinmoy De,et al.  Ligand conjugation of chemically exfoliated MoS2. , 2013, Journal of the American Chemical Society.

[60]  O. Simonetti,et al.  Sub-threshold current in organic thin film transistors: Influence of the transistor layout , 2013 .

[61]  A. Ferrari,et al.  Production and processing of graphene and 2d crystals , 2012 .

[62]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[63]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[64]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[65]  J. Coleman,et al.  Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size , 2012 .

[66]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[67]  J. Coleman,et al.  Electrical Characteristics of Molybdenum Disulfide Flakes Produced by Liquid Exfoliation , 2011, Advanced materials.

[68]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[69]  R. Steudel Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes , 1996 .

[70]  R. J. Hawley Slippery slope , 1995, Neurology.

[71]  N. McIntyre,et al.  Effects of argon ion bombardment on basal plane and polycrystalline MoS2 , 1990 .

[72]  E. D. Crozier,et al.  A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy , 1987 .

[73]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[74]  Sina Ebnesajjad,et al.  From Fundamentals to Applications , 2021, Introduction to Fluoropolymers.

[75]  K. Tsukagoshi,et al.  Charge Transport and Mobility Engineering in Two‐Dimensional Transition Metal Chalcogenide Semiconductors , 2016 .

[76]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.