Measurement error in nonlinear models - a review

This overview of the recent econometrics literature on measurement error in nonlinear models centres on the question of the identification and estimation of general nonlinear models with measurement error. Simple approaches that rely on distributional knowledge regarding the measurement error (such as deconvolution or validation data techniques) are briefly presented. Then follows a description of methods that secure identification via more readily available auxiliary variables (such as repeated measurements, measurement systems with a 'factor model' structure, instrumental variables and panel data). Methods exploiting higher-order moments or bounding techniques to avoid the need for auxiliary information are presented next. Special attention is devoted to a recently introduced general method to handle a broad class of latent variable models, called Entropic Latent Variable Integration via Simulation (ELVIS). Finally, the complex but active topic of nonclassical measurement error is covered and applications of measurement error techniques to other fields are outlined.

[1]  Susanne M. Schennach,et al.  Accompanying document to "Point Estimation with Exponentially Tilted Empirical Likelihood" , 2005, math/0512181.

[2]  G. Imbens,et al.  Information Theoretic Approaches to Inference in Moment Condition Models , 1995 .

[3]  Miklós Laczkovich Differentiable restrictions of continuous functions , 1984 .

[4]  Quang Vuong,et al.  Nonparametric estimation of the mea-surement eror model using multiple indicators , 1998 .

[5]  G. Imbens,et al.  Bias From Classical and Other Forms of Measurement Error , 2000 .

[6]  M. Shum,et al.  Nonparametric Identification of First-Price Auctions With Non-Separable Unobserved Heterogeneity , 2010 .

[7]  G. Ridder,et al.  The Econometrics of Data Combination , 2007 .

[8]  Elena Krasnokutskaya,et al.  Identification and Estimation in Highway Procurement Auctions Under Unobserved Auction Heterogeneity , 2004 .

[9]  E. Krasnokutskaya,et al.  Identification and Estimation of Auction Models with Unobserved Heterogeneity , 2011 .

[10]  G. Ridder,et al.  Estimation of Nonlinear Models with Measurement Error Using Marginal Information1 , 2004 .

[11]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[12]  Cheng Hsiao,et al.  Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models , 2011 .

[13]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[14]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[15]  B. L. S. Prakasa Rao,et al.  Identifiability in stochastic models , 1992 .

[16]  Manoranjan Pal,et al.  Consistent moment estimators of regression coefficients in the presence of errors in variables , 1980 .

[17]  W. Newey,et al.  Instrumental variable estimation of nonparametric models , 2003 .

[18]  Liqun Wang,et al.  A unified approach to estimation of nonlinear mixed effects and Berkson measurement error models , 2007 .

[19]  Susanne M. Schennach Exponential specifications and measurement error , 2004 .

[20]  Marianthi Markatou,et al.  Semiparametric Estimation Of Regression Models For Panel Data , 1993 .

[21]  Dilation Bootstrap A methodology for constructing confidence regions with partially identified models , 2006 .

[22]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[23]  Francesca Molinari Partial identification of probability distributions with misclassified data , 2008 .

[24]  C. Manski,et al.  Inference on Regressions with Interval Data on a Regressor or Outcome , 2002 .

[25]  P. Hall,et al.  Nonparametric methods for inference in the presence of instrumental variables , 2003, math/0603130.

[26]  Stéphane Bonhomme,et al.  Identifying distributional characteristics in random coefficients panel data models , 2009 .

[27]  Hidehiko Ichimura,et al.  Identification and estimation of polynomial errors-in-variables models , 1991 .

[28]  Alexander Meister,et al.  On deconvolution with repeated measurements , 2008 .

[29]  Rosa L. Matzkin Nonparametric Estimation of Nonadditive Random Functions , 2003 .

[30]  Susanne M. Schennach,et al.  Entropic Latent Variable Integration via Simulation , 2013 .

[31]  Tom Wansbeek,et al.  Identification in the Linear Errors in Variables Model , 1983 .

[32]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[33]  Yuichi Kitamura,et al.  An Information-Theoretic Alternative to Generalized Method of Moments Estimation , 1997 .

[34]  Joachim Winter,et al.  Structural Measurement Errors in Nonseparable Models , 2010 .

[35]  C. Manski Nonparametric Bounds on Treatment Effects , 1989 .

[36]  L. Schwartz Théorie des distributions , 1966 .

[37]  Cheng Hsiao,et al.  CONSISTENT ESTIMATION FOR SOME NONLINEAR ERRORS-IN- VARIABLES MODELS , 1989 .

[38]  Aprajit Mahajan,et al.  Identification and Estimation of Regression Models with Misclassification , 2005 .

[39]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[40]  Susanne M. Schennach,et al.  Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models , 2004 .

[41]  Kirill S. Evdokimov Identification and Estimation of a Nonparametric Panel Data Model with Unobserved Heterogeneity ∗ , 2009 .

[42]  J. Florens,et al.  Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization , 2003 .

[43]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[44]  P. Hall,et al.  Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors , 2007, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[45]  John Bound,et al.  The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right? , 1988, Journal of Labor Economics.

[46]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .

[47]  Jerry A. Hausman,et al.  Nonlinear errors in variables Estimation of some Engel curves , 1995 .

[48]  Martin Browning,et al.  Are Two Cheap, Noisy Measures Better Than One Expensive, Accurate One? , 2009 .

[49]  Nandita G. Gawade Measurement Error in Discrete Explanatory Variables: Implications of Conditional Independence. , 2009 .

[50]  Yasuo Amemiya,et al.  Instrumental variable estimator for the nonlinear errors-in-variables model , 1985 .

[51]  Susanne M. Schennach,et al.  Local indirect least squares and average marginal effects in nonseparable structural systems , 2012 .

[52]  M. Lighthill Introduction to Fourier Analysis and Generalised Functions: Introduction , 1958 .

[53]  James J. Heckman,et al.  Estimating the Technology of Cognitive and Noncognitive Skill Formation , 2010, Econometrica : journal of the Econometric Society.

[54]  M. Shum,et al.  Nonparametric identification of dynamic models with unobserved state variables , 2008 .

[55]  Susanne M. Schennach,et al.  Regressions with Berkson errors in covariates - A nonparametric approach , 2013 .

[56]  Marc Henry,et al.  Optimal transportation and the falsifiability of incompletely specified economic models , 2010, 2102.04162.

[57]  George Frederick James Temple The theory of weak functions. I , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[58]  Susanne M. Schennach QUANTILE REGRESSION WITH MISMEASURED COVARIATES , 2008, Econometric Theory.

[59]  Andrew Chesher Parameter approximations for quantile regressions with measurement error , 2001 .

[60]  Ignacy I. Kotlarski,et al.  ON CHARACTERIZING THE GAMMA AND THE NORMAL DISTRIBUTION , 1967 .

[61]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[62]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[63]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[64]  Timothy Erickson Restricting regression slopes in the errors-in-variables model by bounding the error correlation , 1993 .

[65]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[66]  F. Smithies Linear Operators , 2019, Nature.

[67]  Peihua Qiu,et al.  Nonparametric methods for solving the Berkson errors‐in‐variables problem , 2006 .

[68]  J. Hausman Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left , 2001 .

[69]  John Bound,et al.  Measurement error in survey data , 2001 .

[70]  Quang Vuong,et al.  Conditionally independent private information in OCS wildcat auctions , 2000 .

[71]  C. Manski Partial Identification of Probability Distributions , 2003 .

[72]  Liqun Wang Estimation of nonlinear models with Berkson measurement errors , 2004 .

[73]  Joel L. Horowitz,et al.  Identification and Robustness with Contaminated and Corrupted Data , 1995 .

[74]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[75]  Herman Rubin,et al.  Statistical Inference in Factor Analysis , 1956 .

[76]  Susanne M. Schennach,et al.  Nonparametric Identification and Semiparametric Estimation of Classical Measurement Error Models Without Side Information , 2012 .

[77]  Susanne M. Schennach,et al.  Instrumental Variable Treatment of Nonclassical Measurement Error Models , 2008 .

[78]  L. Mattner,et al.  Some incomplete but boundedly complete location families , 1993 .

[79]  Edward E. Leamer,et al.  Consistent Sets of Estimates for Regressions with Errors in All Variables , 1984 .

[80]  Jianqing Fan,et al.  Nonparametric regression with errors in variables , 1993 .

[81]  A. Chesher The effect of measurement error , 1991 .

[82]  M. Dagenais,et al.  Higher moment estimators for linear regression models with errors in the variables , 1997 .

[83]  Leonard A. Stefanski,et al.  Density Estimation with Replicate Heteroscedastic Measurements , 2011, Annals of the Institute of Statistical Mathematics.

[84]  Jiexiang Li Asymptotic normality for deconvolution kernel density estimators from random fields , 2008 .

[85]  Jerry A. Hausman,et al.  Errors in Variables in Panel Data , 1984 .

[86]  Raymond J. Carroll,et al.  Semiparametric quasilikelihood and variance function estimation in measurement error models , 1993 .

[87]  Andrew Chesher,et al.  Treatment effect estimation with covariate measurement error , 2009 .

[88]  Xiaohong Chen,et al.  Nonparametric identification and estimation of nonclassical errors-in-variables models without additional information , 2007 .

[89]  Susanne M. Schennach,et al.  Estimation of Nonlinear Models with Measurement Error , 2004 .

[90]  Yingyao Hu,et al.  Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution , 2008 .

[91]  Whitney K. Newey Flexible Simulated Moment Estimation of Nonlinear Errors-in-Variables Models , 2001, Review of Economics and Statistics.

[92]  Han Hong,et al.  Measurement Error Models with Auxiliary Data , 2005 .

[93]  Y. H. Steve Huang ON ERRORS-IN-VARIABLES IN POLYNOMIAL REGRESSION- BERKSON CASE , 2003 .

[94]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[95]  Z. Griliches,et al.  Error-in-the-Variables Bias in Nonlinear Contexts , 1970 .

[96]  Toni M. Whited,et al.  TWO-STEP GMM ESTIMATION OF THE ERRORS-IN-VARIABLES MODEL USING HIGH-ORDER MOMENTS , 2002, Econometric Theory.

[97]  I. Molchanov,et al.  Sharp identification regions in models with convex moment predictions , 2010 .

[98]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[99]  Arthur Lewbel,et al.  Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D , 1997 .

[100]  R. Allen,et al.  Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .

[101]  Marie-Luce Taupin,et al.  Semi-Parametric Estimation in the Nonlinear Structural Errors-in-Variables Model , 2001 .

[102]  Susanne M. Schennach,et al.  Estimating average marginal effects in nonseparable structural systems , 2007 .

[103]  Robert L. Taylor,et al.  A consistent nonparametric density estimator for the deconvolution problem , 1989 .

[104]  Berkson measurement error in designed repeated measures studies with random coefficients , 2002 .

[105]  O. Reiersøl Identifiability of a Linear Relation between Variables Which Are Subject to Error , 1950 .

[106]  D. Ruppert,et al.  Nonparametric regression in the presence of measurement error , 1999 .

[107]  Yingyao Hu,et al.  Estimating first-price auctions with an unknown number of bidders: A misclassification approach , 2010 .

[108]  Susan Athey,et al.  Identification of Standard Auction Models , 2000 .

[109]  Xavier D'Haultfoeuille,et al.  ON THE COMPLETENESS CONDITION IN NONPARAMETRIC INSTRUMENTAL PROBLEMS , 2010, Econometric Theory.

[110]  Tong Li,et al.  Robust and consistent estimation of nonlinear errors-in-variables models , 2002 .

[111]  G. Shilov,et al.  DEFINITION AND SIMPLEST PROPERTIES OF GENERALIZED FUNCTIONS , 1964 .

[112]  S. Bonhomme,et al.  Consistent noisy independent component analysis , 2008 .

[113]  Jean-Marc Robin,et al.  Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics , 2010 .

[114]  On Deconvolution as a First Stage Nonparametric Estimator , 2005 .

[115]  Michel Loève,et al.  Probability Theory I , 1977 .

[116]  C. Bollinger,et al.  Measurement Error in the Current Population Survey: A Nonparametric Look , 1998, Journal of Labor Economics.

[117]  J. G. Cragg,et al.  Using Higher Moments to Estimate the Simple Errors-in-Variables Model , 1997 .

[118]  D.Sc. Joseph Berkson Are there Two Regressions , 1950 .

[119]  Timothy Erickson,et al.  Measurement Error and the Relationship between Investment and q , 2000, Journal of Political Economy.