The main contributions of robust statistics to statistical science and a new challenge
暂无分享,去创建一个
[1] N. Meinshausen,et al. Minimum Distance Lasso for robust high-dimensional regression , 2016 .
[2] S. Sheather,et al. Robust Estimation & Testing: Staudte/Robust , 1990 .
[3] R. Tibshirani,et al. Regression shrinkage and selection via the lasso: a retrospective , 2011 .
[4] Andrea Montanari,et al. High dimensional robust M-estimation: asymptotic variance via approximate message passing , 2013, Probability Theory and Related Fields.
[5] Jianqing Fan,et al. ADAPTIVE ROBUST VARIABLE SELECTION. , 2012, Annals of statistics.
[6] Peter Bühlmann. Regression shrinkage and selection via the Lasso: a retrospective (Robert Tibshirani): Comments on the presentation , 2011 .
[7] R. Koenker. Quantile Regression: Name Index , 2005 .
[8] Anthony C. Atkinson,et al. Robust Diagnostic Regression Analysis , 2000 .
[9] L. Hansen. Large Sample Properties of Generalized Method of Moments Estimators , 1982 .
[10] Sivaraman Balakrishnan,et al. Robust estimation via robust gradient estimation , 2018, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[11] Howard Wainer,et al. Robust Regression & Outlier Detection , 1988 .
[12] H. Rieder. Robust asymptotic statistics , 1994 .
[13] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[14] P. J. Huber. A Robust Version of the Probability Ratio Test , 1965 .
[15] S. Sheather,et al. Robust Estimation and Testing , 1990 .
[16] Marco Avella-Medina. Influence functions for penalized M-estimators , 2017 .
[17] F. Hampel. The Influence Curve and Its Role in Robust Estimation , 1974 .
[18] Regina Y. Liu. On a Notion of Data Depth Based on Random Simplices , 1990 .
[19] Trevor Hastie,et al. Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .
[20] Werner A. Stahel,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[21] H. White. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .
[22] John W. Tukey,et al. Configural Polysampling: A Route to Practical Robustness. , 1993 .
[23] Matthieu Lerasle,et al. ROBUST MACHINE LEARNING BY MEDIAN-OF-MEANS: THEORY AND PRACTICE , 2019 .
[24] Roy E. Welsch,et al. Robust variable selection using least angle regression and elemental set sampling , 2007, Comput. Stat. Data Anal..
[25] V. P. Godambe. An Optimum Property of Regular Maximum Likelihood Estimation , 1960 .
[26] Kuldeep Kumar,et al. Robust Statistics, 2nd edn , 2011 .
[27] J. Tukey. The Future of Data Analysis , 1962 .
[28] Christophe Croux,et al. Sparse least trimmed squares regression for analyzing high-dimensional large data sets , 2013, 1304.4773.
[29] Alessio Farcomeni,et al. Robust Methods for Data Reduction , 2015 .
[30] D. Donoho. 50 Years of Data Science , 2017 .
[31] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[32] S. Zeger,et al. Longitudinal data analysis using generalized linear models , 1986 .
[33] P. J. Huber. The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .
[34] E. Ronchetti,et al. Robust and consistent variable selection in high-dimensional generalized linear models , 2018 .
[35] Jianqing Fan,et al. A Selective Overview of Variable Selection in High Dimensional Feature Space. , 2009, Statistica Sinica.
[36] Peter J. Huber,et al. Robust Statistics , 2005, Wiley Series in Probability and Statistics.
[37] Brenton R. Clarke. Robustness Theory and Application , 2018 .
[38] K. Do,et al. Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .
[39] Y. She,et al. Robust reduced-rank regression , 2015, Biometrika.
[40] Stephane Heritier,et al. Robust Methods in Biostatistics , 2009 .
[41] Jun Zhang,et al. Robust rank correlation based screening , 2010, 1012.4255.
[42] R. V. Mises. On the Asymptotic Distribution of Differentiable Statistical Functions , 1947 .
[43] P. J. Huber,et al. Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .
[44] Paul Tseng,et al. Robust wavelet denoising , 2001, IEEE Trans. Signal Process..
[45] A. Belloni,et al. L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.
[46] Regina Y. Liu,et al. Regression depth. Commentaries. Rejoinder , 1999 .
[47] A. H. Welsh,et al. Aspects of Statistical Inference: Welsh/Aspects , 1996 .
[48] Anthony C. Atkinson,et al. Exploring Multivariate Data with the Forward Search , 2004 .
[49] William J. J. Rey,et al. Robust statistical methods , 1978 .
[50] Heping Zhang,et al. Robust Variable Selection With Exponential Squared Loss , 2013, Journal of the American Statistical Association.
[51] Sara van de Geer,et al. Statistics for High-Dimensional Data , 2011 .
[52] Asit P. Basu,et al. Aspects of Statistical Inference , 1996, Technometrics.
[53] Po-Ling Loh,et al. Statistical consistency and asymptotic normality for high-dimensional robust M-estimators , 2015, ArXiv.
[54] E. Ronchetti,et al. Robust statistics: a selective overview and new directions , 2015 .
[55] Yiyuan She,et al. Outlier Detection Using Nonconvex Penalized Regression , 2010, ArXiv.
[56] Sara van de Geer,et al. Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .
[57] Qiang Sun,et al. Adaptive Huber Regression , 2017, Journal of the American Statistical Association.
[58] P. J. Huber. Robust Estimation of a Location Parameter , 1964 .