Exemplifying definitions: a case of a square

In this study we utilize the notion of learner-generated examples, suggesting that examples generated by students mirror their understanding of particular mathematical concepts. In particular, we explore examples generated by a group of prospective secondary school teachers for a definition of a square. Our framework for analysis includes the categories of accessibility and correctness, richness, and generality. Results shed light on participants’ understanding of what a mathematical definition should entail and, moreover, contrast their pedagogical preferences with mathematical considerations.

[1]  Raffaella Borasi,et al.  Learning Mathematics Through Inquiry , 1994 .

[2]  John Mason,et al.  Mathematics as a Constructive Activity: Learners Generating Examples , 2005 .

[3]  E. Fischbein,et al.  Intuition in science and mathematics , 1987 .

[4]  E. Fischbein,et al.  Defining in Classroom Activities , 1997 .

[5]  Blake E. Peterson,et al.  Mathematics for Elementary Teachers: A Contemporary Approach , 1988 .

[6]  Gary L. Musser Mathematics for Elementary Teachers , 1991 .

[7]  To Define Or Not To Define: The Case Of (-8)1/3 , 1997 .

[8]  H. S. Carslaw.,et al.  The Teaching of Mathematics , 1912, Nature.

[9]  Barbara J. Dougherty,et al.  Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education , 2020 .

[10]  Shlomo Vinner,et al.  The Role of Definitions in the Teaching and Learning of Mathematics , 2002 .

[11]  Sybilla Beckmann,et al.  Mathematics for Elementary Teachers , 2005 .

[12]  Henri Poincaré Science and Method , 1914 .

[13]  O. Zaslavsky,et al.  Students' Conceptions of a Mathematical Definition , 2005 .

[14]  J. Kilpatrick,et al.  Mathematics Education as a Research Domain: A Search for Identity , 1998 .

[15]  Randall P. Dahlberg,et al.  Facilitating Learning Events Through Example Generation , 1997 .

[16]  Michael B. Ward,et al.  Surprises from Mathematics Education Research: Student (Mis)use of Mathematical Definitions , 2004, Am. Math. Mon..

[17]  Roza Leikin,et al.  On Equivalent and Non-Equivalent Definitions: Part 1. , 2000 .

[18]  David Tall,et al.  Advanced Mathematical Thinking , 1994 .

[19]  Michael De Villiers,et al.  To teach definitions in geometry or teach to define , 2009 .

[20]  Luis Rico Romero,et al.  Intuition in Science and Mathematics: an educational approach , 1988 .

[21]  David Tall,et al.  Concept image and concept definition in mathematics with particular reference to limits and continuity , 1981 .

[22]  H. Freudenthal Mathematics as an Educational Task , 1972 .

[23]  Researching from the Inside in Mathematics Education , 1998 .

[24]  Roza Leikin,et al.  Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks , 2007 .

[25]  Orit Zaslavsky,et al.  The many facets of a definition: The case of periodicity , 2003 .