Igneous and shock processes affecting chassignite amphibole evaluated using chlorine/water partitioning and hydrogen isotopes

Amphibole in chassignite melt inclusions provides valuable information about the volatile content of the original interstitial magma, but also shock and postshock processes. We have analyzed amphibole and other phases from NWA 2737 melt inclusions, and we evaluate these data along with published values to constrain the crystallization Cl and H2O content of phases in chassignite melt inclusions and the effects of shock on these amphibole grains. Using a model for the Cl/OH exchange between amphibole and melt, we estimate primary crystallization OH contents of chassignite amphiboles. SIMS analysis shows that amphibole from NWA 2737 currently has 0.15 wt% H2O. It has lost ~0.6 wt% H2O from an initial 0.7–0.8 wt% H2O due to intense shock. Chassigny amphibole had on average 0.3–0.4 wt% H2O and suffered little net loss of H2O due to shock. NWA 2737 amphibole has δD ≈ +3700‰; it absorbed Martian atmosphere‐derived heavy H in the aftermath of shock. Chassigny amphibole, with δD ≤ +1900‰, incorporated less heavy H. Low H2O/Cl ratios are inferred for the primitive chassignite magma, which had significant effects on melting and crystallization. Volatiles released by the degassing of Martian magma were more Cl‐rich than on Earth, resulting in the high Cl content of Martian surface materials.

[1]  J. Ague,et al.  Principles of Igneous and Metamorphic Petrology , 2022 .

[2]  A. Treiman,et al.  High-temperature chlorine-rich fluid in the martian crust: A precursor to habitability , 2014 .

[3]  T. Sharp,et al.  Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars , 2014 .

[4]  J. Filiberto,et al.  Quantitative models linking igneous amphibole composition with magma Cl and OH content , 2014 .

[5]  John H. Jones,et al.  The Deuterium to Hydrogen Ratio in the Water that Formed the Yellowknife Bay Mudstones in Gale Crater , 2014 .

[6]  A. Treiman,et al.  K2O‐rich trapped melt in olivine in the Nakhla meteorite: Implications for petrogenesis of nakhlites and evolution of the Martian mantle , 2013 .

[7]  M. Domeneghetti,et al.  Thermal history of nakhlites : a comparison between MIL 03346 and its terrestrial analogue Theo's flow , 2013 .

[8]  P. Cartigny,et al.  The hydrogen isotopic composition and water content of southern Pacific MORB: A reassessment of the D/H ratio of the depleted mantle reservoir , 2013 .

[9]  Andrew Steele,et al.  Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere , 2013, Science.

[10]  D. Günther,et al.  Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1,300 °C , 2013, Contributions to Mineralogy and Petrology.

[11]  M. Clynne,et al.  Hydrogen Isotope Investigation of Amphibole and Glass in Dacite Magmas Erupted in 1980^1986 and 2005 at Mount St. Helens, Washington , 2013 .

[12]  B. Schmidt,et al.  Fluorine and chlorine diffusion in phonolitic melt , 2013 .

[13]  F. McCubbin,et al.  A petrogenetic model for the comagmatic origin of chassignites and nakhlites: Inferences from chlorine‐rich minerals, petrology, and geochemistry , 2013 .

[14]  J. Dilles,et al.  Amphibole Geochemistry of the Yanacocha Volcanics, Peru: Evidence for Diverse Sources of Magmatic Volatiles Related to Gold Ores , 2013 .

[15]  J. Filiberto,et al.  Water in the martian interior: Evidence for terrestrial MORB mantle-like volatile contents from hydroxyl-rich apatite in olivine–phyric shergottite NWA 6234 , 2013 .

[16]  H. McSween,et al.  The water content and parental magma of the second chassignite NWA 2737: Clues from trapped melt inclusions in olivine , 2013 .

[17]  John H. Jones,et al.  Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites , 2012 .

[18]  A. S. Madden,et al.  Jarosite dissolution rates and maximum lifetimes in high salinity brines: Implications for Earth and Mars , 2012 .

[19]  F. Hawthorne,et al.  Nomenclature of the amphibole supergroup , 2012 .

[20]  D. Ming,et al.  Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes , 2012 .

[21]  M. Newville,et al.  Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions , 2012 .

[22]  F. McCubbin,et al.  Hydrous melting of the martian mantle produced both depleted and enriched shergottites , 2012 .

[23]  D. Harlov,et al.  Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens , 2012 .

[24]  Changqian Ma,et al.  Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the Liujiawa pluton (Dabie orogen, China) , 2012, Contributions to Mineralogy and Petrology.

[25]  A. Treiman,et al.  Effect of fluorine on near-liquidus phase equilibria of an Fe–Mg rich basalt , 2012 .

[26]  M. Clynne,et al.  Hydrogen isotope investigation of amphibole and biotite phenocrysts in silicic magmas erupted at Lassen Volcanic Center, California , 2012 .

[27]  G. J. Taylor,et al.  Theo's flow, (Ontario, Canada): A terrestrail analog for the martian nakhlite meteorites , 2011 .

[28]  G. Yogodzinski,et al.  Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite volatile contents, and the halogen and water budgets of planetary mantles , 2011 .

[29]  B. Scaillet,et al.  The H2O solubility of alkali basaltic melts: an experimental study , 2011 .

[30]  A. Simon,et al.  Experimental evidence for the alteration of the Fe3+/ΣFe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles , 2011 .

[31]  A. Provost,et al.  The rate of water loss from olivine-hosted melt inclusions , 2011 .

[32]  A. Treiman,et al.  Effect of Fluorine on Near-Liquidus Phase Equilibria of Basalts , 2010 .

[33]  F. Langenhorst,et al.  Microstructural investigations on strongly stained olivines of the chassignite NWA 2737 and implications for its shock history , 2010 .

[34]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[35]  G. J. Taylor,et al.  K and Cl concentrations on the Martian surface determined by the Mars Odyssey Gamma Ray Spectrometer: Implications for bulk halogen abundances in Mars , 2010 .

[36]  William V. Boynton,et al.  Quantitative geochemical mapping of martian elemental provinces , 2010 .

[37]  F. McCubbin,et al.  Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian , 2010 .

[38]  A. Treiman,et al.  Martian magmas contained abundant chlorine, but little water , 2009 .

[39]  William V. Boynton,et al.  Chemically striking regions on Mars and Stealth revisited , 2009 .

[40]  J. Fritz,et al.  High-pressure phases in an ultramafic rock from Mars , 2009 .

[41]  M. Edmonds,et al.  Chlorine variations in the magma of Soufriere Hills Volcano, Montserrat : insights from Cl in hornblende and melt inclusions , 2009 .

[42]  A. Treiman,et al.  The effect of chlorine on the liquidus of basalt: First results and implications for basalt genesis on Mars and Earth , 2009 .

[43]  A. Aiuppa,et al.  Halogens in volcanic systems , 2009 .

[44]  B. Vivo,et al.  The partitioning behavior of Cl, S, and H2O in aqueous vapor- ± saline-liquid saturated phonolitic and trachytic melts at 200 MPa , 2009 .

[45]  R. Moretti,et al.  Chlorine Partitioning Between a Basaltic Melt and H2O-CO2 Fluids at Mount Etna , 2009 .

[46]  F. McCubbin,et al.  Linking the Chassigny meteorite and the Martian surface rock Backstay: Insights into igneous crustal differentiation processes on Mars , 2009 .

[47]  C. Mandeville,et al.  Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa , 2009 .

[48]  Erwan Treguier,et al.  Overview of Mars surface geochemical diversity through Alpha Particle X-Ray Spectrometer data multidimensional analysis: First attempt at modeling rock alteration , 2008 .

[49]  F. McCubbin,et al.  Compositional diversity and stratification of the Martian crust: Inferences from crystallization experiments on the picrobasalt Humphrey from Gusev Crater, Mars , 2008 .

[50]  M. Trieloff,et al.  Helium loss from Martian meteorites mainly induced by shock metamorphism: Evidence from new data and a literature compilation , 2008 .

[51]  D. Garrison,et al.  39Ar–40Ar age and thermal history of martian dunite NWA 2737 , 2008 .

[52]  T. Hiroi,et al.  Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine , 2008 .

[53]  F. McCubbin,et al.  Maskelynite-hosted apatite in the Chassigny meteorite: Insights into late-stage magmatic volatile evolution in martian magmas , 2008 .

[54]  E. Vicenzi,et al.  Hydrogen isotope evidence for loss of water from Mars through time , 2008 .

[55]  T. Ahrens,et al.  Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 2. Kaersutitic amphibole experiments , 2008 .

[56]  M. Dyar,et al.  Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 1. Amphibolite experiments , 2008 .

[57]  J. Filiberto Experimental constraints on the parental liquid of the Chassigny meteorite: A possible link between the Chassigny meteorite and a Martian Gusev basalt , 2008 .

[58]  B. Reynard,et al.  Shock-induced metallic iron nanoparticles in olivine-rich Martian meteorites , 2007 .

[59]  F. Hawthorne,et al.  Amphiboles: Crystal Chemistry , 2007 .

[60]  Robert F. Martin,et al.  Amphiboles in the Igneous Environment , 2007 .

[61]  J. Schumacher Metamorphic Amphiboles: Composition and Coexistence , 2007 .

[62]  F. Cámara,et al.  An electron microprobe, LAM-ICP-MS and single-crystal X-ray structure refinement study of the effects of pressure, melt-H2O concentration and fO2 on experimentally produced basaltic amphiboles , 2007 .

[63]  B. Reynard,et al.  Shock-induced transformation of olivine to a new metastable (Mg,Fe)2SiO4 polymorph in Martian meteorites , 2007 .

[64]  Yong‐Fei Zheng,et al.  TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet , 2007 .

[65]  M. V. Mironenko,et al.  Timing of acid weathering on Mars: A kinetic‐thermodynamic assessment , 2007 .

[66]  F. McCubbin,et al.  Alkalic parental magmas for chassignites? , 2007 .

[67]  D. Baker,et al.  Halogen diffusion in a basaltic melt , 2007 .

[68]  C. Pieters,et al.  Martian Dunite NWA 2737: Petrographic constraints on geological history, shock events, and olivine color , 2007 .

[69]  Richard D. Starr,et al.  Bulk composition and early differentiation of Mars , 2007 .

[70]  M. Portnyagin,et al.  Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H 2 O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc , 2007 .

[71]  R. Blake,et al.  Evidence for an acidic ocean on Mars from phosphorus geochemistry of Martian soils and rocks , 2006 .

[72]  K. Sugiyama,et al.  Determination of the Fe oxidation state of the Chassigny kaersutite: A microXANES spectroscopic study , 2006 .

[73]  G. Gaetani,et al.  Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions , 2006 .

[74]  E. Vicenzi,et al.  Aqueous processes recorded by martian meteorites : Analyzing martian water on earth , 2006 .

[75]  J. Adam,et al.  Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour , 2006 .

[76]  B. Marty,et al.  Noble gases in the Martian meteorite Northwest Africa 2737: A new chassignite signature , 2006 .

[77]  B. Reynard,et al.  Petrography and geochemistry of the chassignite Northwest Africa 2737 (NWA 2737) , 2006 .

[78]  C. Floss,et al.  Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars , 2006 .

[79]  Z. Homonnay,et al.  H2O‐δD‐FeIII relations of dehydrogenation and dehydration processes in magmatic amphiboles , 2006 .

[80]  B. Reynard,et al.  Pyroxene Crystal-Chemistry and the Late Cooling History of NWA 2737 , 2006 .

[81]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[82]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[83]  J. Webster,et al.  Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid , 2005 .

[84]  R. Botcharnikov,et al.  Experimental Petrology of the 1991-1995 Unzen Dacite, Japan. Part II: Cl/OH Partitioning between Hornblende and Melt and its Implications for the Origin of Oscillatory Zoning of Hornblende Phenocrysts , 2004 .

[85]  D. Kohlstedt,et al.  Influence of protons on Fe‐Mg interdiffusion in olivine , 2004 .

[86]  J. Webster The exsolution of magmatic hydrosaline chloride liquids , 2004 .

[87]  J. Filiberto,et al.  The Origin and Evolution of Silica-saturated Alkalic Suites: an Experimental Study , 2004 .

[88]  F. Mazdab THE DIVERSITY AND OCCURRENCE OF POTASSIUM-DOMINANT AMPHIBOLES , 2003 .

[89]  N. Boctor,et al.  The sources of water in Martian meteorites: clues from hydrogen isotopes , 2003 .

[90]  K. Nishiizumi,et al.  Noble gases and cosmogenic radionuclides in the Gold Basin L4 chondrite shower: Thermal history, exposure history, and pre‐atmospheric size , 2003 .

[91]  D. Neuville,et al.  Aqueous alteration in the Northwest Africa 817 (NWA 817) Martian meteorite , 2002 .

[92]  B. De Vivo,et al.  Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius , 2002 .

[93]  J. Lunine,et al.  The origin of water on Mars , 2002 .

[94]  S. Newman,et al.  SIMS analysis of volatiles in silicate glasses , 2002 .

[95]  L. Leshin,et al.  Hosts of hydrogen in Allan Hills 84001: Evidence for hydrous martian salts in the oldest martian meteorite? , 2002 .

[96]  E. Hauri SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions , 2002 .

[97]  T. Ahrens,et al.  Shock-induced devolatilization and isotopic fractionation of H and C from Murchison meteorite: some implications for planetary accretion , 2001 .

[98]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[99]  H. McSween,et al.  Phase equilibria of the Shergotty meteorite: Constraints on pre‐eruptive water contents of martian magmas and fractional crystallization under hydrous conditions , 2001 .

[100]  R. Clayton,et al.  Martian Volatiles: Isotopic Composition, Origin, and Evolution , 2001 .

[101]  H. McSween,et al.  Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite , 2001, Nature.

[102]  K. Mathew,et al.  Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny , 2001 .

[103]  L. Leshin Insights into Martian water reservoirs from analyses of Martian meteorite QUE94201 , 2000 .

[104]  John Bridges,et al.  Evaporite mineral assemblages in the nakhlite (martian) meteorites , 2000 .

[105]  A. Schmitt,et al.  The Merzbacher & Eggler (1984) Geohygrometer: a Cautionary Note on its Suitability for High-K Suites , 2000 .

[106]  R. Clocchiatti,et al.  Glass‐bearing inclusions in olivine of the Chassigny achondrite: Heterogeneous trapping at sub‐igneous temperatures , 2000 .

[107]  Youxue Zhang H2O in rhyolitic glasses and melts: Measurement, speciation, solubility, and diffusion , 1999 .

[108]  K. Righter,et al.  Oxy-substitution and dehydrogenation in mantle-derived amphibole megacrysts , 1999 .

[109]  D. Garrison,et al.  Argon‐39‐argon‐40 “ages” and trapped argon in Martian shergottites, Chassigny, and Allan Hills 84001 , 1999 .

[110]  B. Mysen,et al.  The role of H2O in Martian magmatic systems , 1998 .

[111]  K. Mathew,et al.  Martian atmospheric and indigenous components of xenon and nitrogen in the Shergotty, Nakhla, and Chassigny group meteorites , 1998 .

[112]  T. Sisson,et al.  Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia , 1998, Nature.

[113]  I. Carmichael,et al.  The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth , 1998 .

[114]  O. Matsubaya,et al.  Change in D/H ratio, water content and color during dehydration of hornblende , 1998 .

[115]  T. Vennemann,et al.  An empirical model for the solubility of H2O in magmas to 3 kilobars , 1998 .

[116]  S. Chakraborty Rates and mechanisms of Fe‐Mg interdiffusion in olivine at 980°–1300°C , 1997 .

[117]  J. R. O'neil,et al.  Hydrogen isotope exchange reactions between hydrous minerals and molecular hydrogen: I. A new approach for the determination of hydrogen isotope fractionation at moderate temperatures , 1996 .

[118]  L. Leshin,et al.  HYDROGEN ISOTOPE GEOCHEMISTRY OF SNC METEORITES , 1996 .

[119]  E. Stolper,et al.  An Experimental Study of Water and Carbon Dioxide Solubilities in Mid-Ocean Ridge Basaltic Liquids. Part I: Calibration and Solubility Models , 1995 .

[120]  M. Wadhwa,et al.  Trace and minor elements in minerals of nakhlites and Chassigny: Clues to their petrogenesis , 1995 .

[121]  H. S. Yoder,et al.  An experimental study of phase equilibria and Fe oxy-component in kaersutitic amphibole; implications for the f H2 and alpha H2O in the upper mantle , 1995 .

[122]  J. Adam,et al.  The effects of pressure and temperature on the partitioning of Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts , 1994 .

[123]  S. Wentworth,et al.  Carbonates and sulfates in the Chassigny meteorite: Further evidence for aqueous chemistry on the SNC parent planet , 1994 .

[124]  S. Epstein,et al.  Water on Mars: Clues from Deuterium/Hydrogen and Water Contents of Hydrous Phases in SNC Meteorites , 1994, Science.

[125]  T. Holland,et al.  Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry , 1994 .

[126]  J. D. Robertson,et al.  Crystal chemistry of Fe3+ and H+ in mantle kaersutite: Implications for mantle metasomatism , 1993 .

[127]  David Anderson,et al.  Quilf: A pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides , 1993 .

[128]  D. Bird,et al.  Cl-bearing amphibole in the Salton Sea geothermal system, California , 1992 .

[129]  H. McSween,et al.  The parent magma of the nakhlite meteorites - Clues from melt inclusions , 1992 .

[130]  M. Dyar,et al.  Fe3+/H+ and D/H in kaersutites—Misleading indicators of mantle source fugacities , 1992 .

[131]  R. Stern,et al.  Petrogenesis of Ultramafic Xenoliths from the 1800 Kaupulehu Flow, Hualalai Volcano, Hawaii , 1992 .

[132]  J. Morrison COMPOSITIONAL CONSTRAINTS ON THE INCORPORATION OF CL INTO AMPHIBOLES , 1991 .

[133]  T. Holland,et al.  Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer , 1990 .

[134]  U. Ott Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny , 1988 .

[135]  H. Wänke,et al.  Volatiles on Earth and Mars: A comparison , 1987 .

[136]  H. Nekvasil,et al.  Equilibrium properties of granite pegmatite magmas , 1986 .

[137]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[138]  E. Stolper The speciation of water in silicate melts , 1982 .

[139]  R. J. Floran,et al.  A Cumulate Dunite with Hydrous Amphibole-Bearing Melt Inclusions , 1978 .

[140]  B. Leake,et al.  Report. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names , 1971, Mineralogical Magazine.

[141]  D. Baker,et al.  Chlorine-hydroxyl diffusion in pargasitic amphibole , 2015 .

[142]  J. Filiberto,et al.  CONTINUED EVIDENCE FOR CHLORINE-RICH MARTIAN MAGMAS : CONSTRAINTS ON THE CHLORINE CONTENT OF THE MARTIAN MANTLE , 2014 .

[143]  R. Dasgupta Ingassing, Storage, and Outgassing of Terrestrial Carbon through Geologic Time , 2013 .

[144]  J. D. Winter Principles Of Igneous And Metamorphic Petrology 2nd Edition , 2013 .

[145]  Youxue Zhang,et al.  Diffusion of H, C, and O Components in Silicate Melts , 2010 .

[146]  T. N. Kolobyanina,et al.  HIGH PRESSURE PHASES , 2010 .

[147]  W. Lamb,et al.  Amphibole equilibria in mantle rocks: Determining values of mantle aH2O and implications for mantle H2O contents , 2009 .

[148]  N. Métrich,et al.  Volatile Abundances in Basaltic Magmas and Their Degassing Paths Tracked by Melt Inclusions , 2008 .

[149]  M. Dv,et al.  Crystal chemistry of Fe 3 + and H + in mantle kaersutite : Implications for mantle metasomatism , 2007 .

[150]  T. Hiroi,et al.  The Origin of Brown Olivine in Martian Dunite NWA 2737 , 2007 .

[151]  Ronnnu,et al.  The mechanism of Cl incorporation in amphibole , 2007 .

[152]  W. Lamb,et al.  Oxy-amphibole equilibria in Ti-bearing calcic amphiboles: Experimental investigation and petrologic implications for mantle-derived amphiboles , 2006 .

[153]  L. Nyquist,et al.  Crystallization Age and Source Signature of Chassigny , 2005 .

[154]  I. Franchi,et al.  1 The Origins of Martian Water: What We Can Learn from Meteorites , 2005 .

[155]  A. Monkawa,et al.  Fast Cooling History of the Chassigny Martian Meteorite , 2004 .

[156]  B. Leake,et al.  Nomenclature of the Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commision on New Minerals , 1997 .

[157]  J. Eichelberger Silicic Volcanism: Ascent of Viscous Magmas from Crustal Reservoirs , 1995 .

[158]  H. S. Yoder,et al.  An experimental study of phase equilibria and Fe oxy-component in kaersutitic amphibole: Implications for the fH₂ and aH₂O in the upper mantle , 1995 .

[159]  Katherine Halvorsen,et al.  A data-based approach to statistics , 1995 .

[160]  Marie C. Johnson,et al.  Chassigny petrogenesis: Melt compositions, intensive parameters, and water contents of Martian ( ) magmas , 1991 .

[161]  J. Valley Stable isotope geochemistry of metamorphic rocks , 1986 .

[162]  C. WlvNp,et al.  Equilibrium properties of granite pegmatite magmas , 1986 .

[163]  C. Burnham Magmas and hydrothermal fluids. , 1979 .

[164]  E. Jérémine,et al.  Etude minéralogique et structurale de la météorite de Chassigny , 1962 .