Process Modeling and Optimization: Issues and Challenges

We present a finite element method which is well suited for mold-filling and solidification problems. These problems present unusual challenges in physical modeling, numerical methods and the efficient use of computational resources. High Reynolds number, transient, turbulent flows with free surfaces must be modeled in complex 3D geometries. One or two equation turbulence models with wall functions are used. The position of the flow front in the mold cavity is computed using a pseudo-concentration technique. Computations are presented for free surface turbulent fluid flow coupled to heat transfer and phase-change. The methodology has the robustness and cost effectiveness needed to tackle complex industrial applications.

[1]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[2]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[3]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[4]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[5]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[6]  Roland W. Lewis,et al.  Finite element solution of non‐linear heat conduction problems with special reference to phase change , 1974 .

[7]  Erik G. Thompson,et al.  Use of pseudo‐concentrations to follow creeping viscous flows during transient analysis , 1986 .

[8]  Roland W. Lewis,et al.  An improved algrorithm for heat conduction problems with phase change , 1978 .

[9]  D. Pelletier,et al.  Positivity preserving formulations for adaptive solution of two-equation models of turbulence , 1996 .

[10]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[11]  P. M. Roberts,et al.  Finite element simulation of solidification problems , 1987 .

[12]  O. C. Zienkiewicz,et al.  Split, Characteristic Based Semi-Implicit Algorithm for Laminar/turbulent Incompressible Flows , 1996 .

[13]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[14]  Dominique Pelletier,et al.  Adaptive Remeshing for the k-Epsilon Model of Turbulence , 1997 .

[15]  Dominique Pelletier,et al.  Positivity Preservation and Adaptive Solution for the k-? Model of Turbulence , 1998 .

[16]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[17]  L. Quartapelle The incompressible Navier—Stokes equations , 1993 .

[18]  B. Launder,et al.  Mathematical Models of turbulence , 1972 .

[19]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[20]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[21]  Dominique Pelletier,et al.  On stabilized finite element formulations for incompressible flows , 1997 .