Aerosol and cloud property relationships for summertime stratiform clouds in the northeastern Atlantic from Advanced Very High Resolution Radiometer observations

This work was supported in part by the NASA CALIPSO Project through NAS1-99104 and in part by the NOAA Global Change Program through NA16GP2911.

[1]  Patrick Minnis,et al.  Two MODIS Aerosol Products over Ocean on the Terra and Aqua CERES SSF Datasets , 2004 .

[2]  Glen Lesins,et al.  Stronger Constraints on the Anthropogenic Indirect Aerosol Effect , 2002, Science.

[3]  James B. Abshire,et al.  The geoscience laser altimeter system (GLAS) , 1998 .

[4]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[5]  I. A. Podgorny Three‐dimensional radiative interactions in a polluted broken cloud system , 2003 .

[6]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[7]  G. Cass,et al.  INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft , 2002 .

[8]  Yoram J. Kaufman,et al.  Effect of Amazon smoke on cloud microphysics and albedo - analysis from satellite imagery , 1993 .

[9]  Sonoyo Mukai,et al.  A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters , 2003 .

[10]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[11]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[12]  Frank McGovern,et al.  The 2nd Aerosol Characterization Experiment (ACE-2): general overview and main results , 2000 .

[13]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  M. Kirkpatrick,et al.  The impact of humidity above stratiform clouds on indirect aerosol climate forcing , 2004, Nature.

[15]  Johannes Quaas,et al.  Aerosol indirect effects in POLDER satellite data and the Laboratoire de Météorologie Dynamique–Zoom (LMDZ) general circulation model , 2004 .

[16]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[17]  C. Bretherton,et al.  The Atlantic Stratocumulus Transition Experiment - ASTEX , 1995 .

[18]  Jacques Pelon,et al.  An overview of the ACE2 CLOUDYCOLUMN closure experiment , 2000 .

[19]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[20]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[21]  David M. Winker,et al.  Mesoscale Variations of Tropospheric Aerosols , 2003 .

[22]  Joyce E. Penner,et al.  Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment , 2000 .

[23]  Michael D. King,et al.  The Role of Background Cloud Microphysics in the Radiative Formation of Ship Tracks , 2000 .

[24]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[25]  Y. Kaufman,et al.  The effect of smoke particles on clouds and climate forcing , 1997 .

[26]  Leon D. Rotstayn,et al.  Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective‐radius and cloud‐lifetime effects , 1999 .

[27]  U. Lohmann,et al.  Nonlinear Aspects of the Climate Response to Greenhouse Gas and Aerosol Forcing , 2004 .

[28]  P. Krummel,et al.  Variability of Optical Depth and Effective Radius in Marine Stratocumulus Clouds , 2001 .

[29]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[30]  Melanie A. Wetzel,et al.  Satellite‐observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing , 1999 .

[31]  Leon D. Rotstayn,et al.  Indirect Aerosol Forcing, Quasi Forcing, and Climate Response , 2001 .

[32]  Jost Heintzenberg,et al.  Sulfate Cooling Effect on Climate Through In-Cloud Oxidation of Anthropogenic SO2 , 1992, Science.

[33]  V. Ramanathan,et al.  Reduction of tropical cloudiness by soot , 2000, Science.

[34]  J. Coakley,et al.  Updated calibration coefficients for NOAA-14 AVHRR Channels 1 and 2 , 2001 .

[35]  Teruyuki Nakajima,et al.  A possible correlation between satellite‐derived cloud and aerosol microphysical parameters , 2001 .

[36]  D. Tanré,et al.  Aerosol optical depths and direct radiative forcing for INDOEX derived from AVHRR: Theory , 2002 .

[37]  Steven Businger,et al.  An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2) , 2000 .

[38]  U. Lohmann,et al.  Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM , 1997 .

[39]  J. Coakley,et al.  Improved calibration coefficients for NOAA-14 AVHRR visible and near-infrared channels , 2001 .

[40]  L. Schüller,et al.  Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .

[41]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[42]  J. Coakley,et al.  Limits to the Aerosol Indirect Radiative Effect Derived from Observations of Ship Tracks , 2002 .

[43]  Natividad Manalo-Smith,et al.  Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations , 2005 .

[44]  M. A. Friedman,et al.  Retrieval of Cloud Properties for Partly Cloudy Imager Pixels , 2005 .

[45]  G. Potter,et al.  Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models , 2004 .

[46]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .