Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera

The large-area coverage at a resolution of 10–20 metres per pixel in colour and three dimensions with the High Resolution Stereo Camera Experiment on the European Space Agency Mars Express Mission has made it possible to study the time-stratigraphic relationships of volcanic and glacial structures in unprecedented detail and give insight into the geological evolution of Mars. Here we show that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today. Glacial deposits at the base of the Olympus Mons escarpment show evidence for repeated phases of activity as recently as about four million years ago. Morphological evidence is found that snow and ice deposition on the Olympus construct at elevations of more than 7,000 metres led to episodes of glacial activity at this height. Even now, water ice protected by an insulating layer of dust may be present at high altitudes on Olympus Mons.

[1]  [Results and interpretation of coronarographies]. , 1975, Annales de medecine interne.

[2]  S. Harris The aureole of Olympus Mons, Mars , 1977 .

[3]  J. Aubele,et al.  Structural evolution of Arsia Mons, Pavonis Mons, and Ascreus Mons: Tharsis region of Mars , 1978 .

[4]  B. Lucchitta Mars and Earth: Comparison of cold-climate features , 1981 .

[5]  Ronald Greeley,et al.  Volcanism on Mars , 1981 .

[6]  G. Neukum,et al.  Further evidence for a mass movement origin of the Olympus Mons aureole , 1982 .

[7]  Victor R. Baker,et al.  The Channels of Mars , 1982 .

[8]  J. Head,et al.  Explosive volcanism on Hecates Tholus, Mars - Investigation of eruption conditions , 1982 .

[9]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[10]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[11]  V. Gulick,et al.  Origin and evolution of valleys on Martian volcanoes , 1990 .

[12]  J. Aubele,et al.  Calderas on Mars: characteristics, structure, and associated flank deformation , 1996, Geological Society, London, Special Publications.

[13]  G. Kargl,et al.  Laboratory Investigation of the Evolution of Cometary Analogs: Results and Interpretation , 1997 .

[14]  W. Markiewicz,et al.  Sublimation coefficient of water ice under simulated cometary-like conditions , 1999 .

[15]  A. McEwen,et al.  Evidence for recent volcanism on Mars from crater counts , 1999, Nature.

[16]  B. Steinberger Plumes in a convecting mantle: Models and observations for individual hotspots , 2000 .

[17]  E. D. Scott,et al.  Evidence for episodicity in the magma supply to the large Tharsis volcanoes , 2001 .

[18]  H. Keller,et al.  Stability of water ice under a porous nonvolatile layer: implications to the south polar layered deposits of Mars , 2001 .

[19]  L. E. Nyquist,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[20]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[21]  William K. Hartmann,et al.  Cratering Records in the Inner Solar System in Relation to the Lunar Reference System , 2001 .

[22]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[23]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[24]  William K. Hartmann,et al.  Cratering Records in the Inner Solar System in Relation to the Lunar Reference System , 2001 .

[25]  R. Wilson,et al.  Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model , 2002 .

[26]  J. Head,et al.  OLYMPUS MONS FAN SHAPED DEPOSIT MORPHOLOGY: EVIDENCE FOR DEBRIS GLACIERS. , 2003 .

[27]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[28]  Alenia Spazio,et al.  MARS ADVANCED RADAR FOR SUBSURFACE AND IONOSPHERE SOUNDING (MARSIS) , 2003 .

[29]  Robert M. Haberle,et al.  Orbital change experiments with a Mars general circulation model , 2003 .

[30]  R. Jordan,et al.  MARSIS: Mars Advanced Radar for Subsurface and Ionosphere Sounding , 2004 .

[31]  Calderas on Mars - magmatic and tectonic characteristics as revealed through images of the High Resolution Stereo Camera (HRSC) on Mars Express , 2004 .

[32]  R. Jaumann,et al.  HRSC: the High Resolution Stereo Camera of Mars Express , 2004 .

[33]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[34]  P. Drossart,et al.  Perennial water ice identified in the south polar cap of Mars , 2004, Nature.

[35]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[36]  Karl L. Mitchell,et al.  Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars , 2005, Nature.

[37]  Jan-Peter Muller,et al.  Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator , 2005, Nature.