Limit of detection estimator for second-order bilinear calibration

A new approach is developed for estimating the limit of detection in second-order bilinear calibration with the generalized rank annihilation method (GRAM). The proposed estimator is based on recently derived expressions for prediction variance and bias. It follows the latest IUPAC recommendations in the sense that it concisely accounts for the probabilities of committing both types I and II errors, i.e. false positive and false negative declarations, respectively. The estimator has been extensively validated with simulated data, yielding promising results.

[1]  K. Booksh,et al.  Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons , 1999 .

[2]  L. A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) , 1995 .

[3]  Hai-Long Wu,et al.  An alternating trilinear decomposition algorithm with application to calibration of HPLC–DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons , 1998 .

[4]  F. X. Rius,et al.  MULTIVARIATE DETECTION LIMITS ESTIMATORS , 1996 .

[5]  B. Kowalski,et al.  Error analysis of the generalized rank annihilation method , 1994 .

[6]  Bruce R. Kowalski,et al.  Generalized rank annihilation factor analysis , 1986 .

[7]  C. Leal Application of Partial Least Squares Multivariate Calibration to Triphenyltin Determination in Sea-water With Excitation–Emission Matrix Fluorescence , 1997 .

[8]  Jian-hui Jiang,et al.  Three‐way data resolution by alternating slice‐wise diagonalization (ASD) method , 2000 .

[9]  Michael L. Myrick,et al.  Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 2. Calibration and Quantitation of Naphthalene and Styrene , 1996 .

[10]  F. Xavier Rius,et al.  Detection limits in classical multivariate calibration models , 2000 .

[11]  F. X. Rius,et al.  MULTIVARIATE DETECTION LIMITS WITH FIXED PROBABILITIES OF ERROR , 1999 .

[12]  Philip K. Hopke,et al.  Estimation of the heteroscedastic noise in large data arrays , 2000 .

[13]  Improved estimation of the limit of detection in multivariate calibration , 1997 .

[14]  Avraham Lorber,et al.  Analytical figures of merit for tensorial calibration , 1997 .

[15]  Lloyd A. Currie,et al.  DETECTION : INTERNATIONAL UPDATE, AND SOME EMERGING DI-LEMMAS INVOLVING CALIBRATION, THE BLANK, AND MULTIPLE DETECTION DECISIONS , 1997 .

[16]  A. Lorber Error propagation and figures of merit for quantification by solving matrix equations , 1986 .

[17]  Yang Li,et al.  Alternating coupled matrices resolution method for three-way arrays analysis , 2000 .

[18]  C. Andrew. Clayton,et al.  Detection limits with specified assurance probabilities , 1987 .

[19]  Yang Li,et al.  Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three‐way data , 1999 .

[20]  R. Boqué,et al.  Iteratively reweighted generalized rank annihilation method 2. Least squares property and variance expressions , 2001 .

[21]  Nicolaas M. Faber,et al.  Iteratively reweighted generalized rank annihilation method: 1. Improved handling of prediction bias , 2001 .

[22]  Gerrit Kateman,et al.  Generalized rank annihilation method. II: Bias and variance in the estimated eigenvalues , 1994 .

[23]  Andre. Hubaux,et al.  Decision and detection limits for calibration curves , 1970 .

[24]  Bruce R. Kowalski,et al.  Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares , 1997 .