Languages for Imperfect Information

This chapter gives a self-contained introduction to game-theoretical semantics (GTS) both for classical first-order logic and for one of its extensions, Independence-Friendly Logic (IF logic). The games used for the interpretation of IF logic are 2-player win-lose extensive games of imperfect information. Several game-theoretical phenomena will be discussed in this context, including signaling and indeterminacy. To overcome indeterminacy, we introduce mixed strategies and apply Von Neumann’s Minimax Theorem. This results in a probabilistic interpretation of IF sentences (equilibrium semantics). We shall use IF logic and its equilibrium semantics to model some well known examples which involve games with imperfect information: Lewis’ signaling games and Monty Hall.

[1]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[2]  Johan van Benthem,et al.  Dynamic Update with Probabilities , 2009, Stud Logica.

[3]  David Lewis Convention: A Philosophical Study , 1986 .

[4]  Jaakko Hintikka,et al.  Quantifiers vs. Quantification Theory , 1973 .

[5]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[6]  Warren D. Goldfarb,et al.  Logic in the twenties: the nature of the quantifier , 1979, Journal of Symbolic Logic.

[7]  Merlijn Sevenster,et al.  Equilibrium semantics of languages of imperfect information , 2010, Ann. Pure Appl. Log..

[8]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[9]  Merlijn Sevenster,et al.  Branches of imperfect information : logic, games, and computation , 2002 .

[10]  Eddie Dekel,et al.  Lexicographic Probabilities and Choice Under Uncertainty , 1991 .

[11]  Xavier Caicedo,et al.  Equivalence and quantifier rules for logic with imperfect information , 2009, Log. J. IGPL.

[12]  Wilbur John Walkoe,et al.  Finite Partially-Ordered Quantification , 1970, J. Symb. Log..

[13]  Pietro Galliani,et al.  Game values and equilibria for undetermined sentences of Dependence Logic , 2008 .

[14]  Jaakko Hintikka,et al.  On the Methodology of Linguistics: A Case Study , 1991 .

[15]  Adrian Brasoveanu,et al.  How indefinites choose their scope , 2011 .

[16]  Jaakko Hintikka,et al.  Anaphora and Definite Descriptions: Two Applications of Game-Theoretical Semantics , 1985 .

[17]  Jaakko Hintikka,et al.  The Game Of Language , 1983 .

[18]  Johan van Benthem,et al.  Conditional Probability Meets Update Logic , 2003, J. Log. Lang. Inf..

[19]  Daniel Friedman,et al.  Monty Hall's Three Doors: Construction and Deconstruction of a Choice Anomaly , 1998 .

[20]  J. Hintikka The Principles of Mathematics Revisited: Introduction , 1996 .

[21]  H. Enderton Finite Partially-Ordered Quantifiers , 1970 .

[22]  Samson Abramsky,et al.  From IF to BI: a tale of dependence and separation , 2011, ArXiv.

[23]  Geoffrey Mott-Smith,et al.  The New complete Hoyle : the official rules of all popular games of skill and chance with the most authoritative advice on winning play , 1964 .

[24]  Christian Ewerhart,et al.  Chess-like Games Are Dominance Solvable in at Most Two Steps , 2000, Games Econ. Behav..

[25]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[26]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[27]  R. Selten Reexamination of the perfectness concept for equilibrium points in extensive games , 1975, Classics in Game Theory.

[28]  K. Jon Barwise,et al.  On branching quantifiers in English , 1979, J. Philos. Log..

[29]  Merlijn Sevenster,et al.  Independence-Friendly Logic - a Game-Theoretic Approach , 2011, London Mathematical Society lecture note series.

[30]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[31]  Jaakko Hintikka,et al.  Game-Theoretical Semantics , 1997, Handbook of Logic and Language.

[32]  Fausto Barbero,et al.  ON EXISTENTIAL DECLARATIONS OF INDEPENDENCE IN IF LOGIC , 2012, The Review of Symbolic Logic.

[33]  W. Hoek,et al.  Dynamic Epistemic Logic , 2007 .

[34]  Fahiem Bacchus,et al.  Lp, a logic for representing and reasoning with statistical knowledge , 1990, Comput. Intell..

[35]  Andreas Blass,et al.  Henkin quantifiers and complete problems , 1986, Ann. Pure Appl. Log..

[36]  Francien Dechesne,et al.  Signalling in IF games: a tricky business , 2005 .

[37]  T. E. S. Raghavan Zero-Sum Two Person Games , 2009, Encyclopedia of Complexity and Systems Science.

[38]  Erich Grädel,et al.  Dependence and Independence , 2012, Stud Logica.

[39]  Martin J. Osborne,et al.  An Introduction to Game Theory , 2003 .

[40]  Gabriel Sandu,et al.  Signalling in independence-friendly logic , 2014, Log. J. IGPL.

[41]  J. Hintikka,et al.  Game-Theoretical Semantics , 1997 .

[42]  Barteld P. Kooi,et al.  Probabilistic Dynamic Epistemic Logic , 2003, J. Log. Lang. Inf..

[43]  J. Hintikka,et al.  Informational Independence as a Semantical Phenomenon , 1989 .

[44]  Wiebe van der Hoek,et al.  Dynamic Epistemic Logic and Knowledge Puzzles , 2007, ICCS.

[45]  Christian Ewerhart,et al.  Iterated Weak Dominance in Strictly Competitive Games of Perfect Information , 2002, J. Econ. Theory.