Languages for Imperfect Information
暂无分享,去创建一个
[1] Pietro Galliani,et al. Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..
[2] Johan van Benthem,et al. Dynamic Update with Probabilities , 2009, Stud Logica.
[3] David Lewis. Convention: A Philosophical Study , 1986 .
[4] Jaakko Hintikka,et al. Quantifiers vs. Quantification Theory , 1973 .
[5] Joseph Y. Halpern. An Analysis of First-Order Logics of Probability , 1989, IJCAI.
[6] Warren D. Goldfarb,et al. Logic in the twenties: the nature of the quantifier , 1979, Journal of Symbolic Logic.
[7] Merlijn Sevenster,et al. Equilibrium semantics of languages of imperfect information , 2010, Ann. Pure Appl. Log..
[8] Wilfrid Hodges,et al. Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.
[9] Merlijn Sevenster,et al. Branches of imperfect information : logic, games, and computation , 2002 .
[10] Eddie Dekel,et al. Lexicographic Probabilities and Choice Under Uncertainty , 1991 .
[11] Xavier Caicedo,et al. Equivalence and quantifier rules for logic with imperfect information , 2009, Log. J. IGPL.
[12] Wilbur John Walkoe,et al. Finite Partially-Ordered Quantification , 1970, J. Symb. Log..
[13] Pietro Galliani,et al. Game values and equilibria for undetermined sentences of Dependence Logic , 2008 .
[14] Jaakko Hintikka,et al. On the Methodology of Linguistics: A Case Study , 1991 .
[15] Adrian Brasoveanu,et al. How indefinites choose their scope , 2011 .
[16] Jaakko Hintikka,et al. Anaphora and Definite Descriptions: Two Applications of Game-Theoretical Semantics , 1985 .
[17] Jaakko Hintikka,et al. The Game Of Language , 1983 .
[18] Johan van Benthem,et al. Conditional Probability Meets Update Logic , 2003, J. Log. Lang. Inf..
[19] Daniel Friedman,et al. Monty Hall's Three Doors: Construction and Deconstruction of a Choice Anomaly , 1998 .
[20] J. Hintikka. The Principles of Mathematics Revisited: Introduction , 1996 .
[21] H. Enderton. Finite Partially-Ordered Quantifiers , 1970 .
[22] Samson Abramsky,et al. From IF to BI: a tale of dependence and separation , 2011, ArXiv.
[23] Geoffrey Mott-Smith,et al. The New complete Hoyle : the official rules of all popular games of skill and chance with the most authoritative advice on winning play , 1964 .
[24] Christian Ewerhart,et al. Chess-like Games Are Dominance Solvable in at Most Two Steps , 2000, Games Econ. Behav..
[25] Ronald Fagin,et al. Reasoning about knowledge , 1995 .
[26] J. Neumann. Zur Theorie der Gesellschaftsspiele , 1928 .
[27] R. Selten. Reexamination of the perfectness concept for equilibrium points in extensive games , 1975, Classics in Game Theory.
[28] K. Jon Barwise,et al. On branching quantifiers in English , 1979, J. Philos. Log..
[29] Merlijn Sevenster,et al. Independence-Friendly Logic - a Game-Theoretic Approach , 2011, London Mathematical Society lecture note series.
[30] Jouko A. Väänänen,et al. Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.
[31] Jaakko Hintikka,et al. Game-Theoretical Semantics , 1997, Handbook of Logic and Language.
[32] Fausto Barbero,et al. ON EXISTENTIAL DECLARATIONS OF INDEPENDENCE IN IF LOGIC , 2012, The Review of Symbolic Logic.
[33] W. Hoek,et al. Dynamic Epistemic Logic , 2007 .
[34] Fahiem Bacchus,et al. Lp, a logic for representing and reasoning with statistical knowledge , 1990, Comput. Intell..
[35] Andreas Blass,et al. Henkin quantifiers and complete problems , 1986, Ann. Pure Appl. Log..
[36] Francien Dechesne,et al. Signalling in IF games: a tricky business , 2005 .
[37] T. E. S. Raghavan. Zero-Sum Two Person Games , 2009, Encyclopedia of Complexity and Systems Science.
[38] Erich Grädel,et al. Dependence and Independence , 2012, Stud Logica.
[39] Martin J. Osborne,et al. An Introduction to Game Theory , 2003 .
[40] Gabriel Sandu,et al. Signalling in independence-friendly logic , 2014, Log. J. IGPL.
[41] J. Hintikka,et al. Game-Theoretical Semantics , 1997 .
[42] Barteld P. Kooi,et al. Probabilistic Dynamic Epistemic Logic , 2003, J. Log. Lang. Inf..
[43] J. Hintikka,et al. Informational Independence as a Semantical Phenomenon , 1989 .
[44] Wiebe van der Hoek,et al. Dynamic Epistemic Logic and Knowledge Puzzles , 2007, ICCS.
[45] Christian Ewerhart,et al. Iterated Weak Dominance in Strictly Competitive Games of Perfect Information , 2002, J. Econ. Theory.