A note on the stability of implicit-explicit flux-splittings for stiff systems of hyperbolic conservation laws

We analyze the stability of implicit-explicit flux-splitting schemes for stiff systems of conservation laws. In particular, we study the modified equation of the corresponding linearized systems. We first prove that symmetric splittings are stable, uniformly in the singular parameter ε. Then we study non-symmetric splittings. We prove that for the barotropic Euler equations, the Degond–Tang splitting [Degond & Tang, Comm. Comp. Phys. 10 (2011), pp. 1–31] and the Haack– Jin–Liu splitting [Haack, Jin & Liu, Comm. Comp. Phys. 12 (2012), pp. 955 980], and for the shallow water equations the recent RS-IMEX splitting are strictly stable in the sense of Majda–Pego. For the full Euler equations, we find a small instability region for a flux splitting introduced by Klein [Klein, J. Comp. Phys. 121 (1995), pp. 213–237], if this splitting is combined with an IMEX scheme as in [Noelle, Bispen, Arun, Lukác̆ová, Munz, SIAM J. Sci. Comp. 36 (2014), pp. B989–B1024].

[1]  Eric Walter,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[2]  Hamed Zakerzadeh Asymptotic analysis of the RS-IMEX scheme for the shallow water equations in one space dimension , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[3]  Raphaël Loubère,et al.  Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit , 2017, SIAM J. Sci. Comput..

[4]  Klaus Kaiser,et al.  A New Stable Splitting for the Isentropic Euler Equations , 2016, Journal of Scientific Computing.

[5]  Hamed Zakerzadeh On the mach-uniformity of the Lagrange-projection scheme , 2016 .

[6]  Jochen Schütz,et al.  A new stable splitting for singularly perturbed ODEs , 2016 .

[7]  Jochen Schütz,et al.  Flux Splitting for Stiff Equations: A Notion on Stability , 2014, J. Sci. Comput..

[8]  Claus-Dieter Munz,et al.  A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..

[9]  Sebastian Noelle,et al.  IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows , 2014 .

[10]  Tao Xiong,et al.  Analysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling , 2013, SIAM J. Numer. Anal..

[11]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[12]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[13]  John A. Trangenstein,et al.  Numerical Solution of Hyperbolic Partial Differential Equations , 2009 .

[14]  Luc Mieussens,et al.  Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..

[15]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[16]  Francis X. Giraldo,et al.  High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model , 2009 .

[17]  Min Tang,et al.  A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface , 2009, Networks Heterog. Media.

[18]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[19]  Jian-Guo Liu,et al.  Analysis of an Asymptotic Preserving Scheme for the Euler-Poisson System in the Quasineutral Limit , 2008, SIAM J. Numer. Anal..

[20]  S. Schochet,et al.  The Incompressible Limit of the Non-Isentropic Euler Equations , 2001 .

[21]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[22]  François Golse,et al.  The Convergence of Numerical Transfer Schemes in Diffusive Regimes I: Discrete-Ordinate Method , 1999 .

[23]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[24]  E. Grenier Oscillatory perturbations of the Navier Stokes equations , 1997 .

[25]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[26]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[27]  H. Kreiss,et al.  Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations , 1991 .

[28]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[29]  Robert L. Pego,et al.  Stable viscosity matrices for systems of conservation laws , 1985 .

[30]  M. Mock A topological degree for orbits connecting critical points of autonomous systems , 1980 .

[31]  C. Conley,et al.  Viscosity matrices for two-dimensional nonlinear hyperbolic systems , 1970 .

[32]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[33]  E. Browne The characteristic roots of a matrix , 1930 .

[34]  I. Bendixson,et al.  Sur les racines d'une équation fondamentale , 1902 .

[35]  Min Tang,et al.  Second order all speed method for the isentropic Euler equations , 2012 .

[36]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[37]  L. Trefethen Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations , 1996 .

[38]  H. H. Rosenbrock,et al.  Some general implicit processes for the numerical solution of differential equations , 1963, Comput. J..