Solar energetic particle interactions with the Venusian atmosphere

In the context of planetary space weather, we estimate the ion production rates in the Venusian atmosphere due to the interactions of solar energetic particles (SEPs) with gas. The assumed concept for our estimations is based on two cases of SEP events, previously observed in near-Earth space: the event in October 1989 and the event in May 2012. For both cases, we assume that the directional properties of the flux and the interplanetary magnetic field configuration would have allowed the SEPs' arrival at Venus and their penetration to the planet's atmosphere. For the event in May 2012, we consider the solar particle properties (integrated flux and rigidity spectrum) obtained by the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al., 2010, 2014) applied previously for the Earth case and scaled to the distance of Venus from the Sun. For the simulation of the actual cascade in the Venusian atmosphere initiated by the incoming particle fluxes, we apply the DYASTIMA code, a Monte Carlo (MC) application based on the Geant4 software (Paschalis et al., 2014). Our predictions are afterwards compared to other estimations derived from previous studies and discussed. Finally, we discuss the differences between the nominal ionization profile due to galactic cosmic-ray–atmosphere interactions and the profile during periods of intense solar activity, and we show the importance of understanding space weather conditions on Venus in the context of future mission preparation and data interpretation.

[1]  Anna Fedorova,et al.  Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express , 2015 .

[2]  Tom A. Nordheim,et al.  Constraints on a potential aerial biosphere on Venus: I. Cosmic rays , 2015 .

[3]  A. P. Suvorov,et al.  Electrical discharges in the atmosphere of Venus , 1979 .

[4]  Karen Aplin Atmospheric Electrification in the Solar System , 2006 .

[5]  Lev I. Dorman,et al.  * * * * * 20% conference discount * * * * * Cosmic Rays in the Earth's Atmosphere and Underground , 2004 .

[6]  C. Russell,et al.  Little or no solar wind enters Venus’ atmosphere at solar minimum , 2007, Nature.

[7]  C. Plainaki,et al.  Derivation of relativistic SEP properties through neutron monitor data modeling , 2015 .

[8]  F. Leblanc,et al.  Some expected impacts of a solar energetic particle event at Mars , 2002 .

[9]  D. Odstrcil Modeling 3-D solar wind structure , 2003 .

[10]  P. Drossart,et al.  Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements , 2015 .

[11]  C. Sarlanis,et al.  Author ' s personal copy Applications and usage of the real-time Neutron Monitor Database q , 2011 .

[12]  G. Reitz,et al.  Influence of higher atmospheric pressure on the Martian radiation environment: Implications for possible habitability in the Noachian epoch , 2011 .

[13]  Christopher T. Russell,et al.  The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter , 2006 .

[14]  J. Lilensten,et al.  Ionization processes in the atmosphere of Titan: I. Ionization in the whole atmosphere , 2009 .

[15]  Jean Lilensten,et al.  Ionization processes in the atmosphere of Titan II. Electron precipitation along magnetic field lines , 2009 .

[16]  D. Brus,et al.  Effect of ions on sulfuric acid‐water binary particle formation: 1. Theory for kinetic‐ and nucleation‐type particle formation and atmospheric implications , 2016 .

[17]  H. Hudson Solar physics: Solar flares add up , 2010 .

[18]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[19]  Yoav Yair,et al.  New results on planetary lightning , 2012 .

[20]  G. Battistoni,et al.  Atmospheric muon simulation using the FLUKA MC Model , 2007 .

[21]  Christina Plainaki,et al.  THE GROUND-LEVEL ENHANCEMENT OF 2012 MAY 17: DERIVATION OF SOLAR PROTON EVENT PROPERTIES THROUGH THE APPLICATION OF THE NMBANGLE PPOLA MODEL , 2014 .

[22]  D. Brus,et al.  Effect of ions on sulfuric acid‐water binary particle formation: 2. Experimental data and comparison with QC‐normalized classical nucleation theory , 2016 .

[23]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[24]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[25]  P. E. Reichley,et al.  Infrared Remote Sounding of the Middle Atmosphere of Venus from the Pioneer Orbiter , 1979, Science.

[26]  R. Dickinson,et al.  Models of Venus neutral upper atmosphere: Structure and composition , 1985 .

[27]  C. T. Russell,et al.  Lightning on Venus inferred from whistler-mode waves in the ionosphere , 2007, Nature.

[28]  James H. Adams,et al.  Single event upsets caused by solar energetic heavy ions , 1996 .

[29]  G. Leonard Tyler,et al.  The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations , 2014 .

[30]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[31]  Véronique Dehant,et al.  What characterizes planetary space weather? , 2014 .

[32]  Paul Withers,et al.  Attenuation of radio signals by the ionosphere of Mars: Theoretical development and application to MARSIS observations , 2011 .

[33]  M. Andriopoulou,et al.  A New Version of the Neutron Monitor Based Anisotropic GLE Model: Application to GLE60 , 2009, 0911.5676.

[34]  I. Usoskin,et al.  Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere , 2010 .

[35]  L. Miroshnichenko,et al.  ELECTRON AND PROTON ACCELERATION DURING THE FIRST GROUND LEVEL ENHANCEMENT EVENT OF SOLAR CYCLE 24 , 2013, 1305.5606.

[36]  I. Usoskin,et al.  Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network , 2014 .

[37]  M. Gurtner,et al.  Atmocosmics:. a Geant 4 Code for Computing the Interaction of Cosmic Rays with the Earth's Atmosphere , 2005 .

[38]  James S. Sims,et al.  The lower ionosphere of Venus , 1974 .

[39]  D. Diner,et al.  Temperature, Cloud Structure, and Dynamics of Venus Middle Atmosphere by Infrared Remote Sensing from Pioneer Orbiter , 1979, Science.

[40]  Christopher J. Mertens,et al.  Ionization processes in the atmosphere of Titan - III. Ionization by high-Z nuclei cosmic rays , 2011 .

[41]  William J. Borucki,et al.  Comparison of Venusian lightning observations , 1982 .

[42]  N. Gopalswamy,et al.  THE FIRST GROUND LEVEL ENHANCEMENT EVENT OF SOLAR CYCLE 24: DIRECT OBSERVATION OF SHOCK FORMATION AND PARTICLE RELEASE HEIGHTS , 2013, The Astrophysical Journal.

[43]  Athena Coustenis,et al.  Planetary space weather: scientific aspects and future perspectives , 2016 .

[44]  M. Shea,et al.  The October 22, 1989, solar cosmic ray enhancement: An analysis of the anisotropy and spectral characteristics , 1997 .

[45]  P. Zarka,et al.  Updated Review of Planetary Atmospheric Electricity , 2008 .

[46]  Robert W. Schunk,et al.  Ionospheres by Robert Schunk , 2009 .

[47]  S. Bekki,et al.  VenLA: The LATMOS Venus cloud model , 2015 .

[48]  Christopher J. Mertens,et al.  Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles , 2015 .

[49]  William J. Borucki,et al.  Predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere , 1982 .

[50]  I. Usoskin,et al.  Cosmic ray-induced ionization in the atmosphere: spatial and temporal changes , 2004 .

[51]  C. Plainaki,et al.  Modeling the solar cosmic ray event of 13 December 2006 using ground level neutron monitor data , 2009 .

[52]  Jane L. Fox,et al.  Solar activity variations of the Venus thermosphere/ionosphere , 2001 .

[53]  P. Paschalis,et al.  Geant4 software application for the simulation of cosmic ray showers in the Earth's atmosphere , 2014 .

[54]  G. M. Keating,et al.  The Venus international reference atmosphere , 1986 .

[55]  W. Borucki,et al.  Lightning generation in planetary atmospheres , 1983 .

[56]  William J. Borucki,et al.  Highly charged cloud particles in the atmosphere of Venus , 2009 .

[57]  Victor Yanke,et al.  Modeling ground level enhancements: Event of 20 January 2005 , 2007 .

[58]  R. Nymmik Initial conditions for radiation analysis: Models of galactic cosmic rays and solar particle events , 2004 .

[59]  R. Pérez-enriquez,et al.  Large solar event of September 29, 1989: ten years after , 2000 .

[60]  Michael Moser,et al.  A Geant4 application to simulate the interaction of space radiation with the Mercurian environment , 2006 .

[61]  Andrew J. Coates,et al.  Ionization of the Venusian atmosphere from solar and galactic cosmic rays , 2015 .

[62]  J. Laštovička,et al.  Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere , 2013 .

[63]  F. Mcdonald,et al.  Radial intensity gradients of galactic cosmic rays (1972–1995) in the heliosphere , 1997 .

[64]  M. L. Kaiser,et al.  Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning , 2001, Nature.

[65]  Thomas E. Cravens,et al.  Titan's induced magnetosphere , 2004 .

[66]  B. Funke,et al.  Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express , 2015 .

[67]  M. Lopez-Valverde,et al.  Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 μm , 2016 .

[68]  J. Lilensten,et al.  Comprehensive calculation of the energy per ion pair or W values for five major planetary upper atmospheres , 2011 .

[69]  Henry E. Revercomb,et al.  Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude , 1985 .

[70]  Karen L. Aplin,et al.  Electrifying Atmospheres: Charging, Ionisation and Lightning in the Solar System and Beyond , 2013 .

[71]  M. Shea,et al.  CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code , 1997 .

[72]  P. Paschalis,et al.  Estimation of the cosmic ray ionization in the Earth's atmosphere during GLE71 , 2016 .

[73]  E. Kyrölä,et al.  Modelling the effects of the October 1989 solar proton event on mesospheric odd nitrogen using a detailed ion and neutral chemistry model , 2002 .

[74]  S. M. Krimigis,et al.  Particle acceleration and sources in the November 1997 solar energetic particle events , 1999 .