Conditional Simulation of Multi-Type Non Stationary Markov Object Models Respecting Specified Proportions

Although Boolean model simulation has been widely used during the last two decades to simulate sedimentary bodies (especially in fluvio-deltaic environments), a key issue has subsisted. One of the most important parameter for object model simulation, namely the (non stationary) intensity of the underlying object process, is not a parameter provided by the end user but must instead be computed from other input parameters, such as local proportions of lithofacies, erosion rule between objects of different types and interaction between objects. This paper revisits a birth and death algorithm for simulating conditional, non stationary, multi-type objects models with interaction. It provides workable approximations for computing the local intensity of the underlying point process to respect proportion maps. Simulated examples show that this algorithm is able to reproduce the desired proportions. Important issues for implementing this algorithm are discussed.

[1]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[2]  Sylvia Richardson,et al.  Inference and monitoring convergence , 1995 .

[3]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[4]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[5]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[6]  Christian Lantuéjoul,et al.  Geostatistical Simulation: Models and Algorithms , 2001 .

[7]  Henning Omre,et al.  Conditioning of Marked Point Processes within a Bayesian Framework , 1997 .

[8]  D. J. Strauss A model for clustering , 1975 .

[9]  G. Fogg,et al.  Transition probability-based indicator geostatistics , 1996 .

[10]  C. Geyer On the Convergence of Monte Carlo Maximum Likelihood Calculations , 1994 .

[11]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[12]  F. Kelly,et al.  A note on Strauss's model for clustering , 1976 .

[13]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[14]  H. H. Haldorsen,et al.  Stochastic Modeling of Underground Reservoir Facies (SMURF) , 1987 .

[15]  E. Ziegel,et al.  Geostatistics Wollongong '96 , 1997 .

[16]  Christian Lantuéjoul Iterative algorithms for simulation , 2002 .

[17]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[18]  M. N. M. von Lieshout Markov Point Processes , 2000 .

[19]  Bin Yu,et al.  Looking at Markov samplers through cusum path plots: a simple diagnostic idea , 1998, Stat. Comput..

[20]  Sebastien Strebelle,et al.  Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics , 2002 .

[21]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[22]  MARKED POINT MODELS FOR FACIES UNITS CONDITIONED ON WELL DATA , 1996 .

[23]  Stephen P. Brooks,et al.  Assessing Convergence of Markov Chain Monte Carlo Algorithms , 2007 .

[24]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[25]  Marta Benito Garcia-Morales,et al.  Non stationnarité dans les modèles de type booléen : application à la simulation d'unités sédimentaires. (Non stationarity in Boolean models: application to the simulation of sedimentary units) , 2003 .