Implementing Propagators for Tabular Constraints

Many real-life constraints describing relations between the problem variables have complex semantics. It means that the constraint domain is defined using a table of compatible tuples rather than using a formula. In the paper we study the implementation of filtering algorithms (propagators) for such constraints that we call tabular constraints. In particular, we propose compact representations of extensionally defined binary constraints and we describe filtering algorithms for them. We concentrate on the implementation aspects of these algorithms so the proposed propagators can be naturally integrated into existing constraint satisfaction packages like SICStus Prolog.

[1]  Nicolas Beldiceanu Sweep as a generic pruning technique , 2000 .

[2]  Mats Carlsson,et al.  Sweep as a Generic Pruning Technique Applied to the Non-overlapping Rectangles Constraint , 2001, CP.

[3]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[4]  Pascal Van Hentenryck,et al.  A Generic Arc-Consistency Algorithm and its Specializations , 1992, Artif. Intell..

[5]  Roman Barták,et al.  A General Relation Constraint: An Implementation , 2000 .

[6]  Mats Carlsson,et al.  An Open-Ended Finite Domain Constraint Solver , 1997, PLILP.

[7]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[8]  Roman Barták Visopt ShopFloor: On the Edge of Planning and Scheduling , 2002, CP.

[9]  Christian Bessiere,et al.  Using Constraint Metaknowledge to Reduce Arc Consistency Computation , 1999, Artif. Intell..

[10]  Christian Bessiere,et al.  Using Inference to Reduce Arc Consistency Computation , 1995, IJCAI.

[11]  Christian Bessiere,et al.  Refining the Basic Constraint Propagation Algorithm , 2001, JFPLC.

[12]  Philippe Jégou,et al.  Efficient Path-Consistency Propagation , 1998, Int. J. Artif. Intell. Tools.

[13]  Nicolas Barnier,et al.  Solving the Kirkman's schoolgirl problem in a few seconds , 2002 .

[14]  Roland H. C. Yap,et al.  Making AC-3 an Optimal Algorithm , 2001, IJCAI.

[15]  Javier Larrosa,et al.  Algorithms for constraint satisfaction , 2003 .

[16]  William I. Grosky,et al.  SOFSEM 2002: Theory and Practice of Informatics , 2002, Lecture Notes in Computer Science.

[17]  Peter J. Stuckey,et al.  Box Constraint Collections for Adhoc Constraints , 2003, CP.

[18]  Thomas C. Henderson,et al.  Arc and Path Consistency Revisited , 1986, Artif. Intell..

[19]  Toby Walsh,et al.  Principles and Practice of Constraint Programming — CP 2001: 7th International Conference, CP 2001 Paphos, Cyprus, November 26 – December 1, 2001 Proceedings , 2001, Lecture Notes in Computer Science.

[20]  Yishai A. Feldman,et al.  Portability by automatic translation: a large-scale case study , 1999 .

[21]  Christian Bessiere,et al.  Arc-Consistency and Arc-Consistency Again , 1993, Artif. Intell..

[22]  Sartaj Sahni,et al.  Covering rectilinear polygons by rectangles , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  Roman Barták Modelling Resource Transitions in Constraint-Based Scheduling , 2002, SOFSEM.

[24]  Roman Barták Filtering Algorithms for Tabular Constraints , 2001 .