Computing the multiplicity structure from geometric involutive form

We present a method based on symbolic-numeric reduction to geometric involutive form to compute the primary component and the differential operators f solution of a polynomial ideal. The singular solution can be exact or approximate. If the singular solution is known with limited accuracy, then we propose a new method to refine it to high accuracy.

[1]  SolvingM,et al.  On Multiplicities in Polynomial System , 1996 .

[2]  Bernard Mourrain,et al.  A New Criterion for Normal Form Algorithms , 1999, AAECC.

[3]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[4]  Robert M. Corless,et al.  A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots , 1997, ISSAC.

[5]  G. Reid,et al.  Fast differential elimination in C: The CDiffElim environment ? ? This program can be downloaded fro , 2001 .

[6]  B. Mourrain Isolated points, duality and residues , 1997 .

[7]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[8]  Takeo Ojika,et al.  Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations , 1987 .

[9]  Tomas Sauer,et al.  H-bases for polynomial interpolation and system solving , 2000, Adv. Comput. Math..

[10]  Zhonggang Zeng,et al.  Computing the multiplicity structure in solving polynomial systems , 2005, ISSAC.

[11]  Y. N. Lakshman A Single Exponential Bound on the Complexity of Computing Gröbner Bases of Zero Dimensional Ideals , 1991 .

[12]  Werner M. Seiler,et al.  Involution - The Formal Theory of Differential Equations and its Applications in Computer Algebra , 2009, Algorithms and computation in mathematics.

[13]  J. Pommaret Systems of partial differential equations and Lie pseudogroups , 1978 .

[14]  Paul S. Wang,et al.  Polynomial Factorization Sharp Bounds, Efficient Algorithms , 1993, J. Symb. Comput..

[15]  H. Michael Möller,et al.  Multivariate Polynomial System Solving Using Intersections of Eigenspaces , 2001, J. Symb. Comput..

[16]  Anton Leykin,et al.  Newton's method with deflation for isolated singularities of polynomial systems , 2006, Theor. Comput. Sci..

[17]  Hideo Suzuki,et al.  Numerical calculation of the multiplicity of a solution to algebraic equations , 1998, Math. Comput..

[18]  Anton Leykin,et al.  Higher-Order Deflation for Polynomial Systems With Isolated Singular Solutions , 2006, math/0602031.

[19]  Bernard Mourrain,et al.  Generalized normal forms and polynomial system solving , 2005, ISSAC.

[20]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[21]  Daniele C. Struppa,et al.  Computational Methods for the Construction of a Class of Noetherian Operators , 2007, Exp. Math..

[22]  Chris Peterson,et al.  A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set , 2006, J. Complex..

[23]  Maria Grazia Marinari,et al.  Gröbner duality and multiplicities in polynomial system solving , 1995, ISSAC '95.

[24]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[25]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[26]  Bernard Mourrain,et al.  Solving projective complete intersection faster , 2000, ISSAC.

[27]  H. M. Möller,et al.  Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems , 1995 .

[28]  Lihong Zhi,et al.  Solving Nonlinear Polynomial Systems via Symbolic-Numeric Elimination Method , 2004 .

[29]  M. Kuranishi ON E. CARTAN'S PROLONGATION THEOREM OF EXTERIOR DIFFERENTIAL SYSTEMS.* , 1957 .

[30]  F. Lemaire,et al.  Determination of approximate symmetries of differential equations , 2003 .

[31]  Yuri A. Blinkov,et al.  Involutive bases of polynomial ideals , 1998, math/9912027.

[32]  Philippe Trébuchet Vers une résolution stable et rapide des équations algébriques , 2002 .

[33]  Barry H. Dayton Numerical local rings and local solution of nonlinear systems , 2007, SNC '07.

[34]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[35]  Maria Grazia Marinari,et al.  ON MULTIPLICITIES IN POLYNOMIAL SYSTEM SOLVING , 1996 .

[36]  Michael Stillman,et al.  A criterion for detectingm-regularity , 1987 .

[37]  Lihong Zhi,et al.  A complete symbolic-numeric linear method for camera pose determination , 2003, ISSAC '03.

[38]  Grégoire Lecerf Quadratic Newton Iteration for Systems with Multiplicity , 2002, Found. Comput. Math..

[39]  T. Ojika,et al.  Deflation algorithm for the multiple roots of a system of nonlinear equations , 1983 .

[40]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..