Counting in generic lattices and higher rank actions

We consider the problem of counting lattice points contained in domains in R defined by products of linear forms and we show that the normalized discrepancies in these counting problems satisfy non-degenerate Central Limit Theorems, provided that d ≥ 9. We also study more refined versions pertaining to "spiraling of approximations". Our techniques are dynamical in nature and exploit effective exponential mixing of all orders for actions of higher-rank abelian groups on the space of unimodular lattices.

[1]  Dubi Kelmer On the mean square of the remainder for the euclidean lattice point counting problem , 2015, 1512.06012.

[2]  Harry Kesten,et al.  Uniform Distribution Mod 1 , 1960 .

[3]  A proof of the generalized second-limit theorem in the theory of probability , 1931 .

[4]  D. Dolgopyat,et al.  Central limit theorems for simultaneous Diophantine approximations , 2016, 1605.00311.

[5]  József Beck,et al.  Randomness in lattice point problems , 2001, Discret. Math..

[6]  D. Dolgopyat,et al.  Deviations of Ergodic sums for Toral Translations I. Convex bodies , 2012, 1206.4853.

[7]  M. Skriganov Ergodic theory on SL(n), diophantine approximations and anomalies in the lattice point problem , 1998 .

[8]  Mordechay B. Levin On the Gaussian Limiting Distribution of Lattice Points in a Parallelepiped , 2013 .

[9]  Jayadev S. Athreya,et al.  Spiraling of approximations and spherical averages of Siegel transforms , 2015, J. Lond. Math. Soc..

[10]  A. Ivic,et al.  Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic , 2004, math/0410522.

[11]  D. Dolgopyat,et al.  Limit theorems for toral translations , 2020, 2006.11748.

[12]  E. Hlawka Über Integrale auf konvexen Körpern I , 1950 .

[13]  A. Gorodnik,et al.  Central limit theorems in the geometry of numbers , 2017, 1706.09218.

[14]  C. A. Rogers Mean values over the space of lattices , 1955 .

[15]  A. Gorodnik,et al.  Central limit theorems for group actions which are exponentially mixing of all orders , 2017, Journal d'Analyse Mathématique.

[16]  Carl Ludwig Siegel,et al.  A Mean Value Theorem in Geometry of Numbers , 1945 .

[17]  D. Dolgopyat,et al.  Deviations of ergodic sums for toral translations II. Boxes , 2012, Publications mathématiques de l'IHÉS.

[18]  A. Gorodnik,et al.  Central limit theorems for Diophantine approximants , 2018, Mathematische Annalen.

[19]  Wolfgang M. Schmidt,et al.  Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height , 1968 .

[20]  W. Schmidt A metrical theorem in geometry of numbers , 1960 .

[21]  Probabilistic Diophantine Approximation: Randomness in Lattice Point Counting , 2014 .

[22]  M. Einsiedler,et al.  Quantitative multiple mixing , 2017, Journal of the European Mathematical Society.