Counting in generic lattices and higher rank actions
暂无分享,去创建一个
[1] Dubi Kelmer. On the mean square of the remainder for the euclidean lattice point counting problem , 2015, 1512.06012.
[2] Harry Kesten,et al. Uniform Distribution Mod 1 , 1960 .
[3] A proof of the generalized second-limit theorem in the theory of probability , 1931 .
[4] D. Dolgopyat,et al. Central limit theorems for simultaneous Diophantine approximations , 2016, 1605.00311.
[5] József Beck,et al. Randomness in lattice point problems , 2001, Discret. Math..
[6] D. Dolgopyat,et al. Deviations of Ergodic sums for Toral Translations I. Convex bodies , 2012, 1206.4853.
[7] M. Skriganov. Ergodic theory on SL(n), diophantine approximations and anomalies in the lattice point problem , 1998 .
[8] Mordechay B. Levin. On the Gaussian Limiting Distribution of Lattice Points in a Parallelepiped , 2013 .
[9] Jayadev S. Athreya,et al. Spiraling of approximations and spherical averages of Siegel transforms , 2015, J. Lond. Math. Soc..
[10] A. Ivic,et al. Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic , 2004, math/0410522.
[11] D. Dolgopyat,et al. Limit theorems for toral translations , 2020, 2006.11748.
[12] E. Hlawka. Über Integrale auf konvexen Körpern I , 1950 .
[13] A. Gorodnik,et al. Central limit theorems in the geometry of numbers , 2017, 1706.09218.
[14] C. A. Rogers. Mean values over the space of lattices , 1955 .
[15] A. Gorodnik,et al. Central limit theorems for group actions which are exponentially mixing of all orders , 2017, Journal d'Analyse Mathématique.
[16] Carl Ludwig Siegel,et al. A Mean Value Theorem in Geometry of Numbers , 1945 .
[17] D. Dolgopyat,et al. Deviations of ergodic sums for toral translations II. Boxes , 2012, Publications mathématiques de l'IHÉS.
[18] A. Gorodnik,et al. Central limit theorems for Diophantine approximants , 2018, Mathematische Annalen.
[19] Wolfgang M. Schmidt,et al. Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height , 1968 .
[20] W. Schmidt. A metrical theorem in geometry of numbers , 1960 .
[21] Probabilistic Diophantine Approximation: Randomness in Lattice Point Counting , 2014 .
[22] M. Einsiedler,et al. Quantitative multiple mixing , 2017, Journal of the European Mathematical Society.