Geometry of phase and polarization singularities illustrated by edge diffraction and the tides

In complex scalar fields, singularities of the phase (optical vortices, wavefront dislocations) are lines in space, or points in the plane, where the wave amplitude vanishes. Phase singularities are illustrated by zeros in edge diffraction and amphidromies in the heights of the tides. In complex vector waves, there are two sorts of polarization singularity. The polarization is purely circular on lines in space or points in the plane (C singularities); these singularities have index +/- 1/2. The polarization is purely linear on lines in space for general vector fields, and surfaces in space or lines in the plane for transverse fields (L singularities); these singularities have index +/- 1. Polarization singularities (C points and L lines) are illustrated in the pattern of tidal currents.

[1]  D. Cartwright,et al.  Tides: A Scientific History , 1999 .

[2]  Mark R. Dennis,et al.  Phase singularities in isotropic random waves , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Ian R. Porteous,et al.  Geometric differentiation for the intelligence of curves and surfaces , 1994 .

[4]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  P. Holland,et al.  The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics , 1993 .

[6]  Michael V Berry,et al.  Black plastic sandwiches demonstrating biaxial optical anisotropy , 1999 .

[7]  M. Berry,et al.  The quantum phase 2-form near degeneracies: two numerical studies , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  K. W. Meissner,et al.  Optics. Lectures on Theoretical Physics, Vol. IV , 1955 .

[9]  John Frederick Nye The motion and structure of dislocations in wavefronts , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  E. W. Schwiderski Global Ocean Tides. Part II. The Semidiurnal Principal Lunar Tide (M2), Atlas of Tidal Charts and Maps. , 1981 .

[11]  P. Holland The Quantum Theory of Motion , 1993 .

[12]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[13]  I. Freund Optical vortex trajectories , 2000 .

[14]  M. Berry,et al.  Quantum states without time-reversal symmetry: wavefront dislocations in a non-integrable Aharonov-Bohm billiard , 1986 .

[15]  Mark R. Dennis,et al.  Polarization singularities in isotropic random vector waves , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  John F Nye,et al.  Natural focusing and fine structure of light: caustics and wave dislocations , 1999 .

[17]  M. Berry,et al.  Umbilic points on Gaussian random surfaces , 1977 .

[18]  Joseph V. Hajnal,et al.  Phase saddles and dislocations in two-dimensional waves such as the tides , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  J. F. Nye,et al.  The wave structure of monochromatic electromagnetic radiation , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Michael V. Berry,et al.  Much ado about nothing: optical distortion lines (phase singularities, zeros, and vortices) , 1998, Other Conferences.