VLSI architectures for soft-decision decoding of Reed-Solomon codes

We present the architectures for bivariate polynomial interpolation and factorization; the two main steps in algebraic soft-decision decoding of Reed-Solomon codes. We present an efficient formulation of the interpolation algorithm in which dependencies among the discrepancy coefficient computations are utilized to reduce interpolation complexity. Interpolation and factorization complexity is also reduced by using an FFT-like formulation for univariate polynomial translation. The modifications required to incorporate the recently proposed algorithm level modifications for efficient interpolation and factorization are also presented. We determine the latency and hardware requirements for soft-decoding a [255,239] Reed-Solomon code using the proposed architectures.

[1]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[2]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[3]  Trieu-Kien Truong,et al.  Fast algorithm for computing the roots of error locator polynomials up to degree 11 in Reed-Solomon decoders , 2001, IEEE Trans. Commun..

[4]  Gui Liang Feng,et al.  A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.

[5]  R. Blahut Theory and practice of error control codes , 1983 .

[6]  Keshab K. Parhi,et al.  VLSI digital signal processing systems , 1999 .

[7]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[8]  Christof Paar,et al.  A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields , 1996, IEEE Trans. Computers.

[9]  Keshab K. Parhi,et al.  Custom VLSI design of efficient low latency and low power finite field multiplier for Reed-Solomon codec , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[10]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[11]  Naresh R. Shanbhag,et al.  High-speed architectures for Reed-Solomon decoders , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[12]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[13]  Alexander Vardy,et al.  Efficient interpolation and factorization in algebraic soft-decision decoding of reed-solonion codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[14]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .

[15]  Ron M. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.

[16]  Frank R. Kschischang,et al.  A VLSI architecture for interpolation in soft-decision list decoding of Reed-Solomon codes , 2002, IEEE Workshop on Signal Processing Systems.

[17]  Tom Høholdt,et al.  Decoding Reed-Solomon Codes Beyond Half the Minimum Distance , 2000 .

[18]  Robert T. Chien,et al.  Cyclic decoding procedures for Bose- Chaudhuri-Hocquenghem codes , 1964, IEEE Trans. Inf. Theory.