LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION?

Young and directly imaged exoplanets offer critical tests of planet-formation models that are not matched by radial velocity surveys of mature stars. These targets have been extremely elusive to date, with no exoplanets younger than 10-20 Myr and only a handful of direct-imaged exoplanets at all ages. We report the direct-imaging discovery of a likely (proto)planet around the young (~2 Myr) solar analog LkCa 15, located inside a known gap in the protoplanetary disk (a transitional disk). Our observations use non-redundant aperture masking interferometry at three epochs to reveal a faint and relatively blue point source (, K' – L' = 0.98 ± 0.22), flanked by approximately co-orbital emission that is red and resolved into at least two sources (, K' – L' = 2.7 ± 0.3; , K' – L' = 1.94 ± 0.16). We propose that the most likely geometry consists of a newly formed (proto)planet that is surrounded by dusty material. The nominal estimated mass is ~6 M Jup according to the 1 Myr hot-start models. However, we argue based on its luminosity, color, and the presence of circumplanetary material that the planet has likely been caught at its epoch of assembly, and hence this mass is an upper limit due to its extreme youth and flux contributed by accretion. The projected separations (71.9 ± 1.6 mas, 100.7 ± 1.9 mas, and 88.2 ± 1.8 mas) and deprojected orbital radii (16, 21, and 19 AU) correspond to the center of the disk gap, but are too close to the primary star for a circular orbit to account for the observed inner edge of the outer disk, so an alternative explanation (i.e., additional planets or an eccentric orbit) is likely required. This discovery is the first direct evidence that at least some transitional disks do indeed host newly formed (or forming) exoplanetary systems, and the observed properties provide crucial insight into the gas giant formation process.

[1]  G. Herbig The Spectrum of the Nebulosity Surrounding T Tauri. , 1950 .

[2]  G. Haro Herbig's Nebulous Objects Near NGC 1999. , 1952 .

[3]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[4]  Thomas A. Prince,et al.  Optical Aperture Synthesis Imaging of Two Binary Stars , 1989 .

[5]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[6]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[7]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[8]  L. Hartmann,et al.  Disk Accretion Rates for T Tauri Stars , 1998 .

[9]  John E. Krist,et al.  An Edge-on Circumstellar Disk in the Young Binary System HK Tauri , 1998 .

[10]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[11]  Dynamical Masses of T Tauri Stars and Calibration of Pre-Main-Sequence Evolution , 2000, astro-ph/0008370.

[12]  P. Tuthill,et al.  Michelson Interferometry with the Keck I Telescope , 2000 .

[13]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[14]  Alan P. Boss,et al.  Gas Giant Protoplanet Formation: Disk Instability Models with Thermodynamics and Radiative Transfer , 2001 .

[15]  M. Skrutskie,et al.  Near-Infrared Photometric Variability of Stars toward the Chamaeleon I Molecular Cloud , 2002, astro-ph/0204430.

[16]  et al,et al.  Infrared Photometry of Late-M, L, and T Dwarfs , 2001, astro-ph/0108435.

[17]  D. Padgett,et al.  Hubble Space Telescope WFPC2 Imaging of the Disk and Jet of HV Tauri C , 2003 .

[18]  R. Mathieu,et al.  Testing Protoplanetary Disk Alignment in Young Binaries , 2004 .

[19]  A. Ghez,et al.  A Multiwavelength Scattered Light Analysis of the Dust Grain Population in the GG Tauri Circumbinary Ring , 2004, astro-ph/0401560.

[20]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[21]  Lynne A. Hillenbrand,et al.  An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks , 2003, astro-ph/0312189.

[22]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[23]  J. D. Monnier,et al.  A Data Exchange Standard for Optical (Visible/IR) Interferometry , 2005 .

[24]  R. Rafikov,et al.  Can Giant Planets Form by Direct Gravitational Instability , 2005 .

[25]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[26]  L. Hartmann,et al.  Disks in Transition in the Taurus Population: Spitzer IRS Spectra of GM Aurigae and DM Tauri , 2005 .

[27]  Sao,et al.  Effects of Dust Growth and Settling in T Tauri Disks , 2005, astro-ph/0511564.

[28]  John D. Monnier,et al.  Monte-Carlo imaging for optical interferometry , 2020, SPIE Astronomical Telescopes + Instrumentation.

[29]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[30]  Frantz Martinache,et al.  Sparse-aperture adaptive optics , 2006, SPIE Astronomical Telescopes + Instrumentation.

[31]  Gennaro D'Angelo,et al.  Gas Flow across Gaps in Protoplanetary Disks , 2005, astro-ph/0512292.

[32]  A. Morbidelli,et al.  On the width and shape of gaps in protoplanetary disks , 2006 .

[33]  L. Hartmann,et al.  On the Diversity of the Taurus Transitional Disks: UX Tauri A and LkCa 15 , 2007, 0710.2892.

[34]  H McAlister,et al.  Imaging the Surface of Altair , 2007, Science.

[35]  R. Jayawardhana,et al.  Evolution of Brown Dwarf Disks: A Spitzer Survey in Upper Scorpius , 2007, astro-ph/0701703.

[36]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[37]  Adam L. Kraus,et al.  Mapping the Shores of the Brown Dwarf Desert. I. Upper Scorpius , 2007, 1509.05217.

[38]  Etienne Artigau,et al.  A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging , 2007, astro-ph/0702697.

[39]  Mark S. Marley,et al.  Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity , 2008, 0805.1066.

[40]  M. Ireland,et al.  The Disk Around CoKu Tauri/4: Circumbinary, Not Transitional , 2008, 0803.2044.

[41]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[42]  Frantz Martinache,et al.  Mapping the Shores of the Brown Dwarf Desert. I. Upper Scorpius , 2008 .

[43]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[44]  Disk-dispersal and planet-formation timescales , 2008, 0805.0386.

[45]  F. Martinache,et al.  Dynamical Mass of GJ 802B: A Brown Dwarf in a Triple System , 2008, 0801.1525.

[46]  NOAO,et al.  First Resolved Images of the Eclipsing and Interacting Binary β Lyrae , 2008 .

[47]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[48]  Catherine Espaillat,et al.  Confirmation of a Gapped Primordial Disk around LkCa 15 , 2008, 0807.2291.

[49]  Jpl,et al.  Saturn Forms by Core Accretion in 3.4 Myr , 2008, 0810.0288.

[50]  C. Dullemond,et al.  EVIDENCE FOR DUST CLEARING THROUGH RESOLVED SUBMILLIMETER IMAGING , 2008, 0802.0998.

[51]  L. Hillenbrand,et al.  MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS , 2009, 0901.3684.

[52]  L. Hillenbrand,et al.  THE COEVALITY OF YOUNG BINARY SYSTEMS , 2009, 0909.0509.

[53]  Aaron C. Boley,et al.  THE TWO MODES OF GAS GIANT PLANET FORMATION , 2009, 0902.3999.

[54]  K. Cruz,et al.  AN INFRARED/X-RAY SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION , 2009, 0911.5451.

[55]  L. Loinard,et al.  VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. III. HP TAU/G2 AND THE THREE-DIMENSIONAL STRUCTURE OF TAURUS , 2009, 0903.5338.

[56]  F. Meru,et al.  Exploring the conditions required to form giant planets via gravitational instability in massive protoplanetary discs , 2010, 1004.3766.

[57]  A. Boss FORMATION OF GIANT PLANETS BY DISK INSTABILITY ON WIDE ORBITS AROUND PROTOSTARS WITH VARIED MASSES , 2010, 1102.4555.

[58]  Frantz Martinache,et al.  KERNEL PHASE IN FIZEAU INTERFEROMETRY , 2010 .

[59]  U. Gorti,et al.  SPITZER SPECTROSCOPY OF THE TRANSITION OBJECT TW Hya , 2010, 1002.4623.

[60]  D. M. Watson,et al.  UNVEILING THE STRUCTURE OF PRE-TRANSITIONAL DISKS , 2010, 1005.2365.

[61]  L. Hartmann,et al.  THE DISK POPULATION OF THE TAURUS STAR-FORMING REGION , 2009, 0911.5457.

[62]  N. Zacharias UCAC3 PIXEL PROCESSING , 2010, 1003.4565.

[63]  E. Kokubo,et al.  Gas accretion onto a protoplanet and formation of a gas giant planet , 2010, 1002.3002.

[64]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[65]  Sarah E. Dodson-Robinson,et al.  The formation of Uranus and Neptune in solid-rich feeding zones: Connecting chemistry and dynamics , 2009, 0911.3873.

[66]  G. Duvert,et al.  PANCHROMATIC OBSERVATIONS AND MODELING OF THE HV TAU C EDGE-ON DISK , 2009, 0911.3445.

[67]  Michael C. Liu,et al.  NEAR-INFRARED SPECTROSCOPY OF THE EXTRASOLAR PLANET HR 8799 b , 2010, 1008.4582.

[68]  Adam Burrows,et al.  MODEL ATMOSPHERES FOR MASSIVE GAS GIANTS WITH THICK CLOUDS: APPLICATION TO THE HR 8799 PLANETS AND PREDICTIONS FOR FUTURE DETECTIONS , 2011, 1102.5089.

[69]  Geoffrey A. Blake,et al.  THE STRUCTURE AND DYNAMICS OF MOLECULAR GAS IN PLANET-FORMING ZONES: A CRIRES SPECTRO-ASTROMETRIC SURVEY , 2011, 1103.3000.

[70]  Catherine Espaillat,et al.  TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS? , 2010, 1012.4395.

[71]  Philippe Laurent,et al.  SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE IN BLACK HOLE SOURCES: MONTE CARLO SIMULATIONS AND AN ANALYTICAL DESCRIPTION , 2010, 1011.3427.

[72]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[73]  G. Chauvin,et al.  A companion candidate in the gap of the T Chamaeleontis transitional disk , 2011, 1102.4982.

[74]  Debra A. Fischer,et al.  The Exoplanet Orbit Database , 2010, 1012.5676.

[75]  Sarah E. Dodson-Robinson,et al.  TRANSITIONAL DISKS AS SIGNPOSTS OF YOUNG, MULTIPLANET SYSTEMS , 2011, 1106.4824.

[76]  Frantz Martinache,et al.  THE ROLE OF MULTIPLICITY IN DISK EVOLUTION AND PLANET FORMATION , 2011, 1109.4141.

[77]  S. Kenyon,et al.  A NEW HYBRID N-BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS , 2010, 1012.0574.

[78]  Michael J. Ireland,et al.  OBSERVATIONAL CONSTRAINTS ON COMPANIONS INSIDE OF 10 AU IN THE HR 8799 PLANETARY SYSTEM , 2011 .

[79]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[80]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS–AURIGA , 2011, 1101.4016.

[81]  A. Burrows,et al.  A 5 μm IMAGE OF β PICTORIS b AT A SUB-JUPITER PROJECTED SEPARATION: EVIDENCE FOR A MISALIGNMENT BETWEEN THE PLANET AND THE INNER, WARPED DISK , 2011, 1105.4607.

[82]  A. Lagrange,et al.  Sparse aperture masking at the VLT. I. Faint companion detection limits for the two debris disk stars HD 92945 and HD 141569 , 2011, 1107.1426.