Constructing a mixed π-conjugated bridge to effectively enhance the nonlinear optical response in the Möbius cyclacene-based systems.

Using density functional theory computations, employing the concept of a mixed π-conjugated bridge can effectively improve the first hyperpolarizability (β0) of Möbius cyclacene (MC)-based systems with a D-π-A framework. This mixed π-conjugated bridge is constructed by applying a -(CH=CH)x-NH2 or -(CH=CH)x-NO2 chain to modify [8]MC, which can lead to a considerable β0 value (e.g. [8]MC-(CH=CH)12-NO2 (9.87 × 10(5) au) with only a certain chain length), much larger than the sole [8]MC (261 au) and the corresponding NH2/NO2-modified polyethylene chain with the same π-conjugated length. It is revealed that the substituent sites and the chain length can play a crucial role in improving β0 values of these MC-chain systems, where the β0 value can monotonically increase with increasing -(CH=CH)x- length, and the substituent electron-withdrawing -(CH=CH)x-NO2 chain is superior to the parallel electron-donating -(CH=CH)x-NH2. These appealing findings can provide valuable insights into the design of novel NLO materials based on MC.

[1]  Chia-Chung Sun,et al.  Möbius basket molecule: structure and properties. , 2010, Physical chemistry chemical physics : PCCP.

[2]  Kim,et al.  Structures, Magnetic Properties, and Aromaticity of Cyclacenes. , 1999, Angewandte Chemie.

[3]  G. Maroulis ELECTRIC PROPERTIES OF CARBON TETRAFLUORIDE , 1996 .

[4]  G. Maroulis Applying Conventional Ab Initio and Density Functional Theory Approaches to Electric Property Calculations. Quantitative Aspects and Perspectives , 2012 .

[5]  Weitao Yang,et al.  A donor-nanotube paradigm for nonlinear optical materials. , 2008, Nano letters.

[6]  K. Harigaya,et al.  What is the shape effect on the (hyper)polarizabilities? A comparison study on the Möbius, normal cyclacene, and linear nitrogen-substituted strip polyacenes , 2008, 0901.0600.

[7]  Xuri Huang,et al.  Constructing a mixed π-conjugated bridge: a simple and effective approach to realize a large first hyperpolarizability in carbon nanotube-based systems , 2013 .

[8]  Xuri Huang,et al.  (Super)alkali atoms interacting with the σ electron cloud: a novel interaction mode triggers large nonlinear optical response of M@P4 and M@C3H6 (M=Li, Na, K and Li3O) , 2013, Journal of Molecular Modeling.

[9]  Chia-Chung Sun,et al.  Alkali metal atom‐aromatic ring: A novel interaction mode realizes large first hyperpolarizabilities of M@AR (M = Li, Na, and K, AR = pyrrole, indole, thiophene, and benzene) , 2011, J. Comput. Chem..

[10]  Xuri Huang,et al.  Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. , 2014, Inorganic chemistry.

[11]  G. Maroulis How large is the static electric (hyper)polarizability anisotropy in HXeI? , 2008, The Journal of chemical physics.

[12]  Zong‐Jun Li,et al.  Structures and considerable static first hyperpolarizabilities: new organic alkalides (M+@n6adz)M'- (M, M'=Li, Na, K; n=2, 3) with cation inside and anion outside of the cage complexants. , 2008, The journal of physical chemistry. B.

[13]  David M. Walba,et al.  Total synthesis of the first molecular Moebius strip , 1982 .

[14]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  A. Lösch Nano , 2012, Ortsregister.

[17]  Z. Su,et al.  Widening or Lengthening? Enhancing the First Hyperpolarizability of Tubiform Multilithium Salts , 2011 .

[18]  A. D. McLean,et al.  Theory of Molecular Polarizabilities , 1967 .

[19]  Chia-Chung Sun,et al.  The lithium‐orientation effect on the hyperpolarizability in the short zigzag‐edged monolithiated aza‐Möbius graphene ribbon [2,7] isomers , 2011 .

[20]  D. Lemal Organic chemistry: Aromatics do the twist , 2003, Nature.

[21]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[22]  J. Oudar,et al.  Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment , 1977 .

[23]  B. Champagne,et al.  Theoretical design of the molecular structure of bent-core mesogens with large second-order nonlinear optical properties. , 2012 .

[24]  Seth R Marder,et al.  Organic nonlinear optical materials: where we have been and where we are going. , 2006, Chemical communications.

[25]  M. Samoć,et al.  Switching the cubic nonlinear optical properties of an electro-, halo-, and photochromic ruthenium alkynyl complex across six states. , 2009, Angewandte Chemie.

[26]  B. Coe,et al.  Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. , 2006, Accounts of chemical research.

[27]  Y. Aoki,et al.  Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependence. , 2006, Journal of the American Chemical Society.

[28]  G. Maroulis Electric (hyper)polarizability derivatives for the symmetric stretching of carbon dioxide , 2003 .

[29]  Feng Long Gu,et al.  Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. , 2007, Journal of the American Chemical Society.

[30]  Jiabo Li,et al.  The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study. , 2004, Journal of the American Chemical Society.

[31]  E. Heilbronner,et al.  Hűckel molecular orbitals of Mőbius-type conformations of annulenes , 1964 .

[32]  H. Zimmerman Moebius-Hueckel concept in organic chemistry. Application of organic molecules and reactions , 1971 .

[33]  V. J. Docherty,et al.  Non-linear optical properties of organic molecules. Part 2. Effect of conjugation length and molecular volume on the calculated hyperpolarisabilities of polyphenyls and polyenes , 1987 .

[34]  Z. Su,et al.  Three-propeller-blade-shaped electride: remarkable alkali-metal-doped effect on the first hyperpolarizability , 2011 .

[35]  Di Wu,et al.  The nitrogen edge‐doped effect on the static first hyperpolarizability of the supershort single‐walled carbon nanotube , 2009, J. Comput. Chem..

[36]  Charlotte K. Williams,et al.  Metal alkynyl σ complexes: Synthesis and materials , 2003 .

[37]  R. Herges,et al.  Synthesis of a Möbius aromatic hydrocarbon , 2003, Nature.

[38]  Fang Ma,et al.  Modulated Nonlinear Optical Responses and Charge Transfer Transition in Endohedral Fullerene Dimers Na@C60C60@F with n-Fold Covalent Bond (n = 1, 2, 5, and 6) and Long Range Ion Bond , 2010 .

[39]  P. Karamanis,et al.  Single (C–C) and triple (CC) bond-length dependence of the static electric polarizability and hyperpolarizability of H–CC–CC–H , 2003 .

[40]  Rainer Herges,et al.  Topology in chemistry: designing Möbius molecules. , 2006, Chemical reviews.

[41]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[42]  Mark A. Ratner,et al.  Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects , 1994 .

[43]  H. Rzepa Möbius aromaticity and delocalization. , 2005, Chemical reviews.

[44]  G I Stegeman,et al.  Large molecular third-order optical nonlinearities in polarized carotenoids. , 1997, Science.

[45]  M. Stępień,et al.  Expanded porphyrin with a split personality: a Hückel-Möbius aromaticity switch. , 2007, Angewandte Chemie.

[46]  Yoshinori Ando,et al.  Pentagons, heptagons and negative curvature in graphite microtubule growth , 1992, Nature.

[47]  Z. Su,et al.  Novel Trumpet-Shaped Conjugation Bridge (Carbon Nanocone) for Nonlinear Optical Materials , 2011 .

[48]  C. Näther,et al.  Synthesis and properties of the first Möbius annulenes. , 2006, Chemistry.

[49]  H. Zimmerman,et al.  Synthesis and physical properties of barrelene, a unique Moebius-like molecule , 1969 .

[50]  Yong-Qing Qiu,et al.  Spiral intramolecular charge transfer and large first hyperpolarizability in Möbius cyclacenes: new insight into the localized π electrons. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  Donald M. Burland,et al.  SECOND-ORDER NONLINEARITY IN POLED-POLYMER SYSTEMS , 1994 .

[52]  A. Datta,et al.  Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability. , 2006, Chemical Society reviews.

[53]  Ryan Pemberton,et al.  Dynamic processes in [16]annulene: Möbius bond-shifting routes to configuration change. , 2006, Journal of the American Chemical Society.

[54]  Xuri Huang,et al.  Exceptionally large second-order nonlinear optical response in donor-graphene nanoribbon-acceptor systems. , 2011, Chemistry.

[55]  J. Zyss,et al.  Synthesis, photophysical and nonlinear optical properties of macromolecular architectures featuring octupolar tris(bipyridine) ruthenium(II) moieties: evidence for a supramolecular self-ordering in a dentritic structure. , 2003, Journal of the American Chemical Society.

[56]  Y. Aoki,et al.  Investigation on nonlinear optical properties of ladder-structure polydiacetylenes derivatives by using the elongation finite-field method , 2009 .

[57]  D. F. Eaton,et al.  Nonlinear Optical Materials , 1991, Science.

[58]  Xuri Huang,et al.  Constructing (super)alkali-boron-heterofullerene dyads: an effective approach to achieve large first hyperpolarizabilities and high stabilities in M3O-BC59 (M = Li, Na and K) and K@n-BC59 (n = 5 and 6). , 2014, Physical chemistry chemical physics : PCCP.