The doping effect of fluorinated aromatic solvents on the rate of ruthenium-catalysed olefin metathesis.

A study concerning the effect of using a fluorinated aromatic solvent as the medium for olefin metathesis reactions catalysed by ruthenium complexes bearing N-heterocyclic carbene ligands is presented. The use of fluorinated aromatic hydrocarbons (FAH) as solvents for olefin metathesis reactions catalysed by standard commercially available ruthenium pre-catalysts allows substantially higher yields of the desired products to be obtained, especially in the case of demanding polyfunctional molecules, including natural and biologically active compounds. Interactions between the FAH and the second-generation ruthenium catalysts, which apparently improve the efficiency of the olefin metathesis transformation, have been studied by X-ray structure analysis and computations, as well as by carrying out a number of metathesis experiments. The optimisation of reaction conditions by using an FAH can be regarded as a complementary approach for the design of new improved ruthenium catalysts. Fluorinated aromatic solvents are an attractive alternative medium for promoting challenging olefin metathesis reactions.

[1]  M. Mauduit,et al.  Microwave-Assisted Ruthenium-Catalysed Olefin Metathesis in Fluorinated Aromatic Hydrocarbons: A Beneficial Combination , 2011 .

[2]  Israel Fernández,et al.  Do ν(CO) stretching frequencies in metal carbonyl complexes unequivocally correlate with the intrinsic electron-donicity of ancillary ligands? , 2011, Chemistry.

[3]  S. Collins,et al.  Efficient macrocyclization achieved via conformational control using intermolecular noncovalent π-cation/arene interactions. , 2010, Journal of the American Chemical Society.

[4]  A. Togni,et al.  Remote C−F−Metal Interactions in Late-Transition-Metal Complexes , 2010 .

[5]  R. Grubbs,et al.  Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. , 2010, Chemical reviews.

[6]  C. Diesendruck,et al.  The Versatile Alkylidene Moiety in Ruthenium Olefin Metathesis Catalysts (Eur. J. Inorg. Chem. 28/2009) , 2009 .

[7]  C. Cramer,et al.  The Ru-Hbpp water oxidation catalyst. , 2009, Journal of the American Chemical Society.

[8]  S. Nolan,et al.  Improving Grubbs' II type ruthenium catalysts by appropriately modifying the N-heterocyclic carbene ligand. , 2009, Chemical communications.

[9]  K. Grela,et al.  Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. , 2009, Chemical reviews.

[10]  Luigi Cavallo,et al.  Probing the mechanism of O2 activation by a copper(I) biomimetic complex of a C-H hydroxylating copper monooxygenase. , 2009, Inorganic chemistry.

[11]  A. Abell,et al.  Synthesis of macrocyclic beta-strand templates by ring closing metathesis. , 2009, The Journal of organic chemistry.

[12]  César A. Urbina-Blanco,et al.  Indenylidene Ruthenium Complex Bearing a Sterically Demanding NHC Ligand: An Efficient Catalyst for Olefin Metathesis at Room Temperature , 2009 .

[13]  S. Grimme,et al.  "Mindless" DFT Benchmarking. , 2009, Journal of chemical theory and computation.

[14]  Donald G Truhlar,et al.  Benchmark Energetic Data in a Model System for Grubbs II Metathesis Catalysis and Their Use for the Development, Assessment, and Validation of Electronic Structure Methods. , 2009, Journal of chemical theory and computation.

[15]  K. Grela,et al.  The doping effect of fluorinated aromatic hydrocarbon solvents on the performance of common olefin metathesis catalysts: application in the preparation of biologically active compounds. , 2008, Chemical communications.

[16]  S. Collins,et al.  Enantioselective synthesis of [7]helicene: dramatic effects of olefin additives and aromatic solvents in asymmetric olefin metathesis. , 2008, Chemistry.

[17]  S. Blechert,et al.  A hexafluorobenzene promoted ring-closing metathesis to form tetrasubstituted olefins , 2008 .

[18]  Mitch Jacoby,et al.  IMPROVING CATALYSTS FOR FUEL SYNTHESIS: ACS MEETING NEWS: Studies finger the causes of Fischer-Tropsch catalyst deactivation , 2008 .

[19]  K C Nicolaou,et al.  Total synthesis, revised structure, and biological evaluation of biyouyanagin A and analogues thereof. , 2008, Journal of the American Chemical Society.

[20]  C. Thiele,et al.  pi-Face donor properties of N-heterocyclic carbenes in Grubbs II complexes. , 2008, Chemistry.

[21]  C. Adjiman,et al.  Solvents for ring-closing metathesis reactions. , 2008, Chemical communications.

[22]  C. K. Segakweng,et al.  Ruthenium Carbene Mediated Metathesis of Oleate-Type Fatty Compounds , 2008, International journal of molecular sciences.

[23]  Peter Chen,et al.  Gas-phase thermochemistry of ruthenium carbene metathesis catalysts. , 2008, Journal of the American Chemical Society.

[24]  P. Piecuch,et al.  Stereoelectronic effects on molecular geometries and state-energy splittings of ligated monocopper dioxygen complexes. , 2008, The journal of physical chemistry. A.

[25]  Jean Rodriguez,et al.  Microwave‐Assisted Olefin Metathesis , 2008 .

[26]  D. Usanov,et al.  In an attempt to provide a user's guide to the galaxy of benzylidene, alkoxybenzylidene, and indenylidene ruthenium olefin metathesis catalysts. , 2008, Chemistry.

[27]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[28]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[29]  Ian C. Stewart,et al.  Increased efficiency in cross-metathesis reactions of sterically hindered olefins. , 2008, Organic letters.

[30]  Miquel Solà,et al.  Mechanistic insights into the chemistry of RuII complexes containing Cl and DMSO ligands. , 2007, Inorganic chemistry.

[31]  A. Fürstner,et al.  Effective modulation of the donor properties of N-heterocyclic carbene ligands by "through-space" communication within a planar chiral scaffold. , 2007, Journal of the American Chemical Society.

[32]  S. Nolan,et al.  N-heterocyclic carbene and phosphine ruthenium indenylidene precatalysts: a comparative study in olefin metathesis. , 2007, Chemistry.

[33]  Steven P. Nolan,et al.  Nachhaltige Konzepte in der Olefinmetathese , 2007 .

[34]  A. Kirschning,et al.  Sustainable concepts in olefin metathesis. , 2007, Angewandte Chemie.

[35]  R. Grubbs,et al.  Decomposition of ruthenium olefin metathesis catalysts. , 2007, Journal of the American Chemical Society.

[36]  D. Quiñonero,et al.  MP2 study of cooperative effects between cation??, anion?? and ??? interactions , 2007 .

[37]  Ian C. Stewart,et al.  Highly efficient ruthenium catalysts for the formation of tetrasubstituted olefins via ring-closing metathesis. , 2007, Organic letters.

[38]  Anatoly Chlenov,et al.  Ruthenium-catalyzed ring-closing metathesis to form tetrasubstituted olefins. , 2007, Organic letters.

[39]  C. Fischmeister,et al.  Simple Ruthenium Precatalyst for the Synthesis of Stilbene Derivatives and Ring‐Closing Metathesis in the Presence of Styrene Initiators , 2007 .

[40]  Donald G Truhlar,et al.  Representative Benchmark Suites for Barrier Heights of Diverse Reaction Types and Assessment of Electronic Structure Methods for Thermochemical Kinetics. , 2007, Journal of chemical theory and computation.

[41]  Matthew L. Maddess,et al.  Convenient access to functionalized vinylcyclopentenols from alkynyloxiranes. , 2007, The Journal of organic chemistry.

[42]  Joseph B. Binder,et al.  Salicylaldimine Ruthenium Alkylidene Complexes: Metathesis Catalysts Tuned for Protic Solvents. , 2007, Advanced synthesis & catalysis.

[43]  Stephen K. Ritter,et al.  THE CHEMICAL BOND: Whether it's sextuple bonds or bonds involving no shared electrons, chemists chase down new MODES OF BONDING , 2007 .

[44]  M. Barbasiewicz,et al.  Probing of the Ligand Anatomy: Effects of the Chelating Alkoxy Ligand Modifications on the Structure and Catalytic Activity of Ruthenium Carbene Complexes , 2007 .

[45]  J. Gladysz,et al.  Syntheses and reactivity of analogues of grubbs' second generation metathesis catalyst with fluorous phosphines : A new phase-transfer strategy for catalyst activation , 2007 .

[46]  Miquel Solà,et al.  New Ru complexes containing the N-tridentate bpea and phosphine ligands: consequences of meridional vs facial geometry. , 2006, Inorganic chemistry.

[47]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[48]  B. W. Gung,et al.  Substituent effects in C6F6-C6H5X stacking interactions. , 2006, The Journal of organic chemistry.

[49]  K. Grela,et al.  A highly selective synthesis of dialkenyl sulfones via cross-metathesis of divinyl sulfone. , 2006, Organic letters.

[50]  R. Grubbs,et al.  A Standard System of Characterization for Olefin Metathesis Catalysts , 2006 .

[51]  K. Grela,et al.  Advanced fine-tuning of grubbs/hoveyda olefin metathesis catalysts: a further step toward an optimum balance between antinomic properties. , 2006, Journal of the American Chemical Society.

[52]  A. Gradillas,et al.  Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations. , 2006, Angewandte Chemie.

[53]  R. Grubbs,et al.  Rate acceleration in olefin metathesis through a fluorine-ruthenium interaction. , 2006, Journal of the American Chemical Society.

[54]  Andreas Kirschning,et al.  Combining enabling techniques in organic synthesis: continuous flow processes with heterogenized catalysts. , 2006, Chemistry.

[55]  J. Gladysz,et al.  Fluorous phase-transfer activation of catalysts: application of a new rate-enhancement strategy to alkene metathesis. , 2006, Chemical communications.

[56]  F. Verpoort,et al.  N,N'-dialkyl- and N-alkyl-N-mesityl-substituted N-heterocyclic carbenes as ligands in Grubbs catalysts. , 2006, Chemistry.

[57]  Vidar R. Jensen,et al.  Quantitative Structure−Activity Relationships of Ruthenium Catalysts for Olefin Metathesis , 2006 .

[58]  Timothy J. Donohoe,et al.  Ringschlussmetathese: ein Schlüssel zur Arensynthese , 2006 .

[59]  Timothy J Donohoe,et al.  Ring-closing metathesis as a basis for the construction of aromatic compounds. , 2006, Angewandte Chemie.

[60]  Helen Stoeckli-Evans,et al.  Atropisomeric discrimination in new Ru(II) complexes containing the C(2)-symmetric didentate chiral phenyl-1,2-bisoxazolinic ligand. , 2006, Chemistry.

[61]  R. Grubbs,et al.  Prevention of undesirable isomerization during olefin metathesis. , 2005, Journal of the American Chemical Society.

[62]  Xiujuan Feng,et al.  Lewis-acid assisted cross metathesis of acrylonitrile with functionalized olefins catalyzed by phosphine-free ruthenium carbene complex. , 2005, Organic & biomolecular chemistry.

[63]  H. Plenio,et al.  π-Face donor properties of N-heterocyclic carbenes , 2005 .

[64]  R. He,et al.  Highly active phosphine-free carbene ruthenium catalyst for cross-metathesis of acrylonitrile with functionalized olefins , 2005 .

[65]  B. Straub Ursache der hohen Aktivität von Grubbs‐Katalysatoren der zweiten Generation , 2005 .

[66]  B. Straub Origin of the high activity of second-generation Grubbs catalysts. , 2005, Angewandte Chemie.

[67]  Grant S. Forman,et al.  A Convenient System for Improving the Efficiency of First-Generation Ruthenium Olefin Metathesis Catalysts , 2005 .

[68]  K. Nicolaou,et al.  Metathesis reactions in total synthesis. , 2005, Angewandte Chemie.

[69]  K. Nicolaou,et al.  Metathesereaktionen in der Totalsynthese , 2005 .

[70]  D. Astruc The metathesis reactions: from a historical perspective to recent developments , 2005 .

[71]  Dennis G. Gillingham,et al.  Ru complexes bearing bidentate carbenes: from innocent curiosity to uniquely effective catalysts for olefin metathesis. , 2004, Organic & biomolecular chemistry.

[72]  M. Mauduit,et al.  Ring-closing metathesis in biphasic BMI.PF6 ionic liquid/toluene medium: a powerful recyclable and environmentally friendly process. , 2004, Chemical communications.

[73]  Volodymyr Sashuk,et al.  Nitro-substituted Hoveyda-Grubbs ruthenium carbenes: enhancement of catalyst activity through electronic activation. , 2004, Journal of the American Chemical Society.

[74]  Alexander Deiters,et al.  Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. , 2004, Chemical reviews.

[75]  P. Hanson,et al.  Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. , 2004, Chemical reviews.

[76]  Richard R. Schrock,et al.  Recent advances in olefin metathesis by molybdenum and tungsten imido alkylidene complexes , 2004 .

[77]  H. Adolfsson,et al.  Efficient microwave-assisted formation of functionalized 2,5-dihydropyrroles using ruthenium-catalyzed ring-closing metathesis , 2004 .

[78]  S. Diver,et al.  Enyne metathesis (enyne bond reorganization). , 2004, Chemical reviews.

[79]  Peter Chen,et al.  Mechanism and activity of ruthenium olefin metathesis catalysts: the role of ligands and substrates from a theoretical perspective. , 2004, Journal of the American Chemical Society.

[80]  I. Nakamura,et al.  Transition-metal-catalyzed reactions in heterocyclic synthesis. , 2004, Chemical reviews.

[81]  Q. Yao,et al.  Poly(fluoroalkyl acrylate)-bound ruthenium carbene complex: a fluorous and recyclable catalyst for ring-closing olefin metathesis. , 2004, Journal of the American Chemical Society.

[82]  O. Lavastre,et al.  Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect. , 2003, The Journal of organic chemistry.

[83]  François Diederich,et al.  Wechselwirkungen mit aromatischen Ringen in chemischen und biologischen Erkennungsprozessen , 2003 .

[84]  R. Grubbs,et al.  A general model for selectivity in olefin cross metathesis. , 2003, Journal of the American Chemical Society.

[85]  J. Conrad,et al.  The first highly active, halide-free ruthenium catalyst for olefin metathesis , 2003 .

[86]  K. Grela,et al.  Cross-metathesis reaction of vinyl sulfones and sulfoxides , 2003 .

[87]  M. Rivard,et al.  Effective and Inexpensive Acrylonitrile Cross-Metathesis: Utilisation of Grubbs II Precatalyst in the Presence of Copper(I) Chloride , 2003 .

[88]  S. Blechert,et al.  Recent developments in olefin cross-metathesis. , 2003, Angewandte Chemie.

[89]  S. Blechert,et al.  Jüngste Entwicklungen bei der gekreuzten Olefinmetathese , 2003 .

[90]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[91]  Lorna M. Stimson,et al.  Arene–perfluoroarene interactions in crystal engineering 8: structures of 1∶1 complexes of hexafluorobenzene with fused-ring polyaromatic hydrocarbons , 2002 .

[92]  R. Grubbs,et al.  A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. , 2002, Angewandte Chemie.

[93]  S. Harutyunyan,et al.  A Highly Efficient Ruthenium Catalyst for Metathesis Reactions , 2002 .

[94]  Edward F. Valeev,et al.  Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer , 2002 .

[95]  Luigi Cavallo,et al.  Mechanism of ruthenium-catalyzed olefin metathesis reactions from a theoretical perspective. , 2002, Journal of the American Chemical Society.

[96]  S. Blechert,et al.  A new highly efficient ruthenium metathesis catalyst. , 2002, Angewandte Chemie.

[97]  S. Blechert,et al.  Highly Selective Cross Metathesis with Acrylonitrile Using a Phosphine Free Ru-Complex , 2001 .

[98]  K. Grela,et al.  Highly selective cross-metathesis with phenyl vinyl sulphone using the ‘second generation’ Grubbs’ catalyst , 2001 .

[99]  R. Grubbs,et al.  Mechanism and activity of ruthenium olefin metathesis catalysts. , 2001, Journal of the American Chemical Society.

[100]  R. Grubbs,et al.  New insights into the mechanism of ruthenium-catalyzed olefin metathesis reactions. , 2001, Journal of the American Chemical Society.

[101]  R. Grubbs,et al.  In situ preparation of a highly active N-heterocyclic carbene-coordinated olefin metathesis catalyst. , 2000, Organic letters.

[102]  Nolan,et al.  Ruthenium carbene complexes with N,N'-bis(mesityl)imidazol-2-ylidene ligands: RCM catalysts of extended scope , 2000, The Journal of organic chemistry.

[103]  Robert H. Grubbs,et al.  New Approaches to Olefin Cross-Metathesis , 2000 .

[104]  R. Grubbs,et al.  Synthesis of trisubstituted alkenes via olefin cross-metathesis. , 1999, Organic letters.

[105]  Anthony J. Arduengo,et al.  Looking for Stable Carbenes: The Difficulty in Starting Anew , 1999 .

[106]  W. Herrmann,et al.  Ruthenium Carbene Complexes with Imidazolin-2-ylidene Ligands Allow the Formation of Tetrasubstituted Cycloalkenes by RCM , 1999 .

[107]  Arun K. Ghosh,et al.  RING-CLOSING METATHESIS STRATEGY TO UNSATURATED γ- AND δ-LACTONES: SYNTHESIS OF HYDROXYETHYLENE ISOSTERE FOR PROTEASE INHIBITORS. , 1998, Tetrahedron letters.

[108]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[109]  H. Plenio The Coordination Chemistry of the CF Unit in Fluorocarbons. , 1997, Chemical reviews.

[110]  A. Fürstner,et al.  Total Syntheses of (+)-Ricinelaidic Acid Lactone and of (−)-Gloeosporone Based on Transition-Metal-Catalyzed C−C Bond Formations , 1997 .

[111]  J. Elguero,et al.  An Attractive Interaction between the π-Cloud of C6F6 and Electron-Donor Atoms , 1997 .

[112]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[113]  Michael Dolg,et al.  Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide , 1994 .

[114]  Peter Schwerdtfeger,et al.  Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials , 1993 .

[115]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[116]  F. Verpoort,et al.  Ruthenium Indenylidene Complexes , 2005 .

[117]  S. Blechert,et al.  Ruthenium catalysed cross metathesis with fluorinated olefins. , 2001, Chemical communications.

[118]  A. Hills,et al.  A C–F–Ru interaction in a complex: preparation and X-ray structure of [Ru{SC6F4(F-2)}(SC6F5)2(PMe2Ph)2] , 1987 .