A Comparison of Detection Performance for Several Track-before-Detect Algorithms

A typical sensor data processing sequence uses a detection algorithm prior to tracking to extract point measurements from the observed sensor data. Track before detect (TBD) is a paradigm which combines target detection and estimation by removing the detection algorithm and supplying the sensor data directly to the tracker. Various different approaches exist for tackling the TBD problem. This article compares the ability of several different approaches to detect low amplitude targets. The following algorithms are considered in this comparison: Bayesian estimation over a discrete grid, dynamic programming, particle filtering methods, and the histogram probabilistic multihypothesis tracker. Algorithms are compared on the basis of detection performance and computation resource requirements.

[1]  S.J. Davey,et al.  A Comparison of Three Algorithms for Tracking Dim Targets , 2007, 2007 Information, Decision and Control.

[2]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[3]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[4]  Roy L. Streit,et al.  Multitarget Tracking of Distributed Targets Using Histogram-PMHT , 2002, Digit. Signal Process..

[5]  Roy L. Streit,et al.  Frequency line tracking using hidden Markov models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[6]  Jose M. F. Moura,et al.  Multiframe detector/tracker: optimal performance , 2001 .

[7]  Roy L. Streit,et al.  Tracking on Intensity-Modulated Data Streams , 2000 .

[8]  Y. Bar-Shalom,et al.  Track formation with bearing and frequency measurements in clutter , 1990, 29th IEEE Conference on Decision and Control.

[9]  J DaveySamuel,et al.  A comparison of detection performance for several track-before-detect algorithms , 2008 .

[10]  S.J. Davey,et al.  Integrated track maintenance for the PMHT via the hysteresis model , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Y. Bar-Shalom,et al.  Directed subspace search ML-PDA with application to active sonar tracking , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[12]  J. N. Driessen,et al.  Particle filter based detection for tracking , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[13]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[14]  Robin J. Evans,et al.  Integrated probabilistic data association , 1994, IEEE Trans. Autom. Control..

[15]  N. Gordon,et al.  International Conference on Information Fusion ( FUSION ) A Comparison of Particle Filters for Recursive Track-before-detect , 2006 .

[16]  D. Lerro,et al.  Automatic Track Formation With Target Amplitude Information , 1991, OCEANS 91 Proceedings.

[17]  S. C. Pohlig,et al.  An algorithm for detection of moving optical targets , 1989 .

[18]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[19]  Peter Willett,et al.  MLPDA and MLPMHT Applied to Some MSTWG Data , 2006, 2006 9th International Conference on Information Fusion.

[20]  Marcelo G. S. Bruno Bayesian methods for multiaspect target tracking in image sequences , 2004, IEEE Transactions on Signal Processing.

[21]  Yaakov Bar-Shalom,et al.  Interacting multiple model tracking with target amplitude feature , 1993 .

[22]  Alex Bateman,et al.  An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.

[23]  S. M. Tonissen,et al.  Maximum likelihood track-before-detect with fluctuating target amplitude , 1998 .

[24]  Neil J. Gordon,et al.  Recursive track-before-detect with target amplitude fluctuations , 2005 .

[25]  Yaakov Bar-Shalom,et al.  Offline and Real-Time Methods for ML-PDA Track Validation , 2007, IEEE Transactions on Signal Processing.

[26]  D. Lerro,et al.  Comparison of Tracking/association Methods For Low SNR Targets , 1992, OCEANS 92 Proceedings@m_Mastering the Oceans Through Technology.

[27]  D. J. Salmond,et al.  A particle filter for track-before-detect , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[28]  Y. Bar-Shalom,et al.  Low observable target motion analysis using amplitude information , 1995, Proceedings of 1995 American Control Conference - ACC'95.