A no-go theorem for theories that decohere to quantum mechanics

To date, there has been no experimental evidence that invalidates quantum theory. Yet it may only be an effective description of the world, in the same way that classical physics is an effective description of the quantum world. We ask whether there exists an operationally defined theory superseding quantum theory, but which reduces to it via a decoherence-like mechanism. We prove that no such post-quantum theory exists if it is demanded that it satisfy two natural physical principles: causality and purification. Causality formalizes the statement that information propagates from present to future, and purification that each state of incomplete information arises in an essentially unique way due to lack of information about an environment. Hence, our result can be viewed either as evidence that the fundamental theory of Nature is quantum or as showing in a rigorous manner that any post-quantum theory must abandon causality, purification or both.

[1]  Ciarán M Lee,et al.  Bounds on the power of proofs and advice in general physical theories , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Ciaran M. Lee,et al.  Bounds on computation from physical principles , 2017 .

[3]  David Pérez-García,et al.  Existence of an information unit as a postulate of quantum theory , 2012, Proceedings of the National Academy of Sciences.

[4]  R. Sorkin Quantum mechanics as quantum measure theory , 1994, gr-qc/9401003.

[5]  Umesh Vazirani,et al.  Fully device-independent quantum key distribution. , 2012, 1210.1810.

[6]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[7]  Joe Henson,et al.  Bounding Quantum Contextuality with Lack of Third-Order Interference. , 2014, Physical review letters.

[8]  S. Massar,et al.  Hyperdense coding and superadditivity of classical capacities in hypersphere theories , 2015, 1504.05147.

[9]  Paolo Perinotti,et al.  Free Quantum Field Theory from Quantum Cellular Automata , 2015, 1601.04832.

[10]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[11]  Giulio Chiribella,et al.  Microcanonical thermodynamics in general physical theories , 2016, 1608.04460.

[12]  Does probability become fuzzy in small regions of spacetime , 2007, 0712.4090.

[13]  G. Niestegge Three-Slit Experiments and Quantum Nonlocality , 2011, 1104.0091.

[14]  И.М. Гельфанд,et al.  On the imbedding of normed rings into the ring of operators in Hilbert space , 1943 .

[15]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[16]  P. Alsing,et al.  Entanglement of Dirac fields in noninertial frames , 2006, quant-ph/0603269.

[17]  Ciarán M. Lee,et al.  The Information Content of Systems in General Physical Theories , 2016, PC.

[18]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[19]  Lucien Hardy,et al.  On the Theory of Composition in Physics , 2013, Computation, Logic, Games, and Quantum Foundations.

[20]  Xiao Yuan,et al.  Bridging the gap between general probabilistic theories and the device-independent framework for nonlocality and contextuality , 2015, Inf. Comput..

[21]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[22]  Aninda Sinha,et al.  On the superposition principle in interference experiments , 2014, Scientific Reports.

[23]  John H. Selby,et al.  Higher-Order Interference in Extensions of Quantum Theory , 2015, 1510.03860.

[24]  Thomas D. Galley,et al.  Classification of all alternatives to the Born rule in terms of informational properties , 2016, 1610.04859.

[25]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[26]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[27]  Č. Brukner,et al.  Quantum Theory and Beyond: Is Entanglement Special? , 2009, 0911.0695.

[28]  Giulio Chiribella,et al.  Entanglement as an axiomatic foundation for statistical mechanics , 2016, ArXiv.

[29]  Bob Coecke,et al.  Terminality implies non-signalling , 2014, QPL.

[30]  J. Emerson,et al.  Three Slit Experiments and the Structure of Quantum Theory , 2009, 0909.4787.

[31]  John H. Selby,et al.  Generalised phase kick-back: the structure of computational algorithms from physical principles , 2015, 1510.04699.

[32]  Howard Barnum,et al.  Ruling out Higher-Order Interference from Purity Principles , 2017, Entropy.

[33]  Giulio Chiribella,et al.  Entanglement and thermodynamics in general probabilistic theories , 2015, 1504.07045.

[34]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[35]  K. Życzkowski Quartic quantum theory: an extension of the standard quantum mechanics , 2008, 0804.1247.

[36]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[37]  Mateus Araújo,et al.  Computational advantage from quantum-controlled ordering of gates. , 2014, Physical review letters.

[38]  Sean Tull,et al.  Two Roads to Classicality , 2017, QPL.

[39]  S. Popescu,et al.  Causality and nonlocality as axioms for quantum mechanics , 1997, quant-ph/9709026.

[40]  R. Alicki,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[41]  Matthew F Pusey,et al.  On the reality of the quantum state , 2011, Nature Physics.

[42]  N. Cerf,et al.  Operational quantum theory without predefined time , 2014, 1406.3829.

[43]  John H. Selby,et al.  Entanglement is Necessary for Emergent Classicality in All Physical Theories. , 2017, Physical review letters.

[44]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[45]  Prakash Panangaden,et al.  Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky , 2013, Lecture Notes in Computer Science.

[46]  Bob Coecke,et al.  Leaks: Quantum, Classical, Intermediate and More , 2017, Entropy.

[47]  Giulio Chiribella,et al.  Purity in microcanonical thermodynamics: a tale of three resource theories , 2016, ArXiv.

[48]  R. Kastner The Illusory Appeal of Decoherence in the Everettian Picture: Affirming the Consequent , 2016, 1603.04845.

[49]  L. Susskind,et al.  Difficulties for the Evolution of Pure States Into Mixed States , 1984 .

[50]  Giulio Chiribella,et al.  Conservation of information and the foundations of quantum mechanics , 2015 .

[51]  Ciarán M. Lee,et al.  Computation in generalised probabilisitic theories , 2014, ArXiv.

[52]  Robert W. Spekkens,et al.  Einstein, Incompleteness, and the Epistemic View of Quantum States , 2007, 0706.2661.

[53]  T. Paterek,et al.  Density cubes and higher-order interference theories , 2013, 1308.2822.

[54]  Typical local measurements in generalized probabilistic theories: emergence of quantum bipartite correlations. , 2012, Physical review letters.

[55]  L. Hardy Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure , 2006, gr-qc/0608043.

[56]  John H. Selby,et al.  Oracles and Query Lower Bounds in Generalised Probabilistic Theories , 2017, Foundations of Physics.

[57]  Markus P. Mueller,et al.  Higher-order interference and single-system postulates characterizing quantum theory , 2014, 1403.4147.

[58]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[59]  Lucien Hardy,et al.  Reconstructing Quantum Theory , 2013, 1303.1538.

[60]  Č. Brukner,et al.  Quantum correlations with no causal order , 2011, Nature Communications.

[61]  K. T. Compton,et al.  THE PHOTOELECTRIC EFFECT. , 1912, Science.

[62]  John H. Selby,et al.  Simple proof of the impossibility of bit commitment in generalized probabilistic theories using cone programming , 2017, 1711.02662.

[63]  Bob Coecke,et al.  Reconstructing quantum theory from diagrammatic postulates , 2018, Quantum.

[64]  G. Chiribella Perfect discrimination of no-signalling channels via quantum superposition of causal structures , 2011, 1109.5154.

[65]  Ciarán M. Lee,et al.  The computational landscape of general physical theories , 2017, npj Quantum Information.

[66]  Roger Colbeck,et al.  No extension of quantum theory can have improved predictive power , 2010, Nature communications.

[67]  vCaslav Brukner,et al.  A purification postulate for quantum mechanics with indefinite causal order , 2016, 1611.08535.

[68]  Stefano Gogioso,et al.  Categorical Probabilistic Theories , 2017, QPL.

[69]  R. Mann,et al.  Alice falls into a black hole: entanglement in noninertial frames. , 2004, Physical review letters.

[70]  Paul Skrzypczyk,et al.  Dimension of physical systems, information processing, and thermodynamics , 2014, 1401.4488.

[71]  A. Bolotin On the ongoing experiments looking for higher-order interference: What are they really testing? , 2016, 1611.06461.

[72]  Jamie Sikora,et al.  How to make unforgeable money in generalised probabilistic theories , 2018, Quantum.

[73]  L. Hardy Reformulating and Reconstructing Quantum Theory , 2011, 1104.2066.

[74]  J. Oppenheim,et al.  Fundamental destruction of information and conservation laws , 2009, 0902.2361.

[75]  L. Hardy Operational General Relativity: Possibilistic, Probabilistic, and Quantum , 2016, 1608.06940.

[76]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[77]  Wojciech H. Zurek,et al.  Quantum Darwinism, classical reality, and the randomness of quantum jumps , 2014, 1412.5206.

[78]  I. M. Gelfand,et al.  On the embedding of normed rings into the ring of operators in Hilbert space , 1987 .

[79]  G. D’Ariano,et al.  Derivation of the Dirac Equation from Principles of Information Processing , 2013, 1306.1934.

[80]  Robert Oeckl,et al.  A first-principles approach to physics based on locality and operationalism , 2014, 1412.7731.

[81]  Giulio Chiribella,et al.  Quantum from principles , 2015, ArXiv.

[82]  A. Michelson Light Waves and Their Uses , 2001 .

[83]  John H. Selby,et al.  Deriving Grover's lower bound from simple physical principles , 2016, 1604.03118.